[1] Leith, E. N. & Upatnieks, J. New techniques in wavefront reconstruction. Journal of the Optical Society of America 51, 1469-1473 (1961).
[2] Denisyuk, Y. N. On the reflection of optical properties of an object in a wave field of light scattered by it. Doklady Akademii Nauk SSSR 144, 1275-1278 (1962).
[3] De Bitetto, D. A holographic motion picture film with constant velocity transport. Applied Physics Letters 12, 295-297 (1968). doi: 10.1063/1.1651998
[4] Jacobson, A. D., Evtuhov, V. & Neeland, J. K. Motion picture holography. Applied Physics Letters 14, 120-122 (1969). doi: 10.1063/1.1652740
[5] Blanche, P. A. Introduction to holographic principles. in Optical Holography: Materials, Theory and Applications (ed Blanche, P. A.) Ch. 1 (Amsterdam: Elsevier, 2020), 1-39.
[6] Ciciora, W. et al. Cable telephony. in Modern Cable Television Technology: Video, Voice, and Data Communications 2nd edn (eds Ciciora, W. et al) Ch. 6 (Amsterdam: Morgan Kaufmann, 2004), 229-284.
[7] Plonus, M. Digital systems. in Electronics and Communications for Scientists and Engineers 2nd edn (ed Plonus, M.) Ch. 9 (Oxford: Butterworth-Heinemann, 2020), 355-480.
[8] Pritchard, D. H. U.S. color television fundamentals: a review. SMPTE Journal 86, 819-828 (1977). doi: 10.5594/J06718
[9] Dunn, D. et al. Stimulating the human visual system beyond real world performance in future augmented reality displays. Proceedings of 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). Porto de Galinhas, Brazil: IEEE, 2020, 90-100.
[10] Howard, I. P. Perceiving in Depth, Volume 1: Basic Mechanisms. (Oxford: Oxford University Press, 2012).
[11] Park, M. C. & Mun, S. Overview of measurement methods for factors affecting the human visual system in 3D displays. Journal of Display Technology 11, 877-888 (2015). doi: 10.1109/JDT.2015.2389212
[12] Mayo, H. Outlines of Human Physiology. 4th edn. (London: Renshaw, 1837).
[13] Cakmakci, O. & Rolland, J. Head-worn displays: a review. Journal of Display Technology 2, 199-216 (2006). doi: 10.1109/JDT.2006.879846
[14] Urey, H. et al. State of the art in stereoscopic and autostereoscopic displays. Proceedings of the IEEE 99, 540-555 (2011). doi: 10.1109/JPROC.2010.2098351
[15] Woods, A. J. Crosstalk in stereoscopic displays: a review. Journal of Electronic Imaging 21, 040902 (2012). doi: 10.1117/1.JEI.21.4.040902
[16] Read, J. C. A. & Bohr, I. User experience while viewing stereoscopic 3D television. Ergonomics 57, 1140-1153 (2014). doi: 10.1080/00140139.2014.914581
[17] Sexton, I. & Surman, P. Stereoscopic and autostereoscopic display systems. IEEE Signal Processing Magazine 16, 85-99 (1999). doi: 10.1109/79.768575
[18] Dodgson, N. A. Autostereoscopic 3D displays. Computer 38, 31-36 (2005). doi: 10.1109/MC.2005.252
[19] Iizuka, K. Engineering Optics. 3rd edn. (New York: Springer, 2008).
[20] Rotter, P. Why did the 3D revolution fail?: the present and future of stereoscopy [commentary]. IEEE Technology and Society Magazine 36, 81-85 (2017).
[21] Chen, Y. S. et al. Video-based eye tracking autostereoscopic displays. Optical Engineering 40, 2726-2734 (2001). doi: 10.1117/1.1416130
[22] Yi, S. Y., Chae, H. B. & Lee, S. H. Moving parallax barrier design for eye-tracking autostereoscopic displays. Proceedings of 2008 3DTV Conference: the True Vision-Capture, Transmission and Display of 3D Video. Istanbul, Turkey: IEEE, 2008, 165-168.
[23] Yoon, K. H. et al. Autostereoscopic 3D display system with dynamic fusion of the viewing zone under eye tracking: principles, setup, and evaluation [Invited]. Applied Optics 57, A101-A117 (2018). doi: 10.1364/AO.57.00A101
[24] Yu, X. B. et al. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues. Optics Express 23, 25950-25958 (2015). doi: 10.1364/OE.23.025950
[25] Kara, P. A. et al. The key performance indicators of projection-based light field visualization. Journal of Information Display 20, 81-93 (2019). doi: 10.1080/15980316.2019.1606120
[26] Kara, P. A. et al. The interdependence of spatial and angular resolution in the quality of experience of light field visualization. Proceedings of 2017 International Conference on 3D Immersion (IC3D). Brussels, Belgium: IEEE, 2017, 1-8.
[27] Stern, A., Yitzhaky, Y. & Javidi, B. Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3-D displays. Proceedings of the IEEE 102, 1571-1587 (2014). doi: 10.1109/JPROC.2014.2348938
[28] Watanabe, Y. & Kakeya, H. A full-HD super-multiview display based on adaptive time-division multiplexing parallax barrier. ITE Transactions on Media Technology and Applications 8, 230-237 (2020). doi: 10.3169/mta.8.230
[29] Wan, W. Q. et al. Super multi-view display based on pixelated nanogratings under an illumination of a point light source. Optics and Lasers in Engineering 134, 106258 (2020). doi: 10.1016/j.optlaseng.2020.106258
[30] Wu, G. C. et al. Light field image processing: an overview. IEEE Journal of Selected Topics in Signal Processing 11, 926-954 (2017). doi: 10.1109/JSTSP.2017.2747126
[31] Martínez-Corral, M. & Javidi, B. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Advances in Optics and Photonics 10, 512-566 (2018). doi: 10.1364/AOP.10.000512
[32] Huang, H. K. & Hua, H. High-performance integral-imaging- based light field augmented reality display using freeform optics. Optics Express 26, 17578-17590 (2018). doi: 10.1364/OE.26.017578
[33] Rogers, B. & Graham, M. Similarities between motion parallax and stereopsis in human depth perception. Vision Research 22, 261-270 (1982). doi: 10.1016/0042-6989(82)90126-2
[34] Blanche, P. A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80-83 (2010). doi: 10.1038/nature09521
[35] Yang, L. et al. Demonstration of a large-size horizontal light-field display based on the LED panel and the micro-pinhole unit array. Optics Communications 414, 140-145 (2018). doi: 10.1016/j.optcom.2017.12.069
[36] Yu, X. B. et al. Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors. Optics Express 27, 16024-16031 (2019). doi: 10.1364/OE.27.016024
[37] Liu, B. Y. et al. Time-multiplexed light field display with 120-degree wide viewing angle. Optics Express 27, 35728-35739 (2019). doi: 10.1364/OE.27.035728
[38] Gao, X. et al. Full-parallax 3D light field display with uniform view density along the horizontal and vertical direction. Optics Communications 467, 125765 (2020). doi: 10.1016/j.optcom.2020.125765
[39] Kara, P. A. et al. Cinema as large as life: large-scale light field cinema system. Proceedings of 2017 International Conference on 3D Immersion (IC3D). Brussels, Belgium: IEEE, 2017, 1-8.
[40] Wang, P. R. et al. A full-parallax tabletop three dimensional light-field display with high viewpoint density and large viewing angle based on space-multiplexed voxel screen. Optics Communications 488, 126757 (2021). doi: 10.1016/j.optcom.2021.126757
[41] Looking Glass Factory. (2021). at https://lookingglassfactory.com/.
[42] Lambooij, M. T., IJsselsteijn, W. A. & Heynderickx, I. Visual discomfort in stereoscopic displays: a review. Proceedings of SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV. San Jose, CA, United States: SPIE, 2007, 64900I.
[43] Hoffman, D. M. et al. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 33 (2008).
[44] Kim, J., Kane, D. & Banks, M. S. The rate of change of vergence–accommodation conflict affects visual discomfort. Vision Research 105, 159-165 (2014). doi: 10.1016/j.visres.2014.10.021
[45] Daniel, F. & Kapoula, Z. Induced vergence-accommodation conflict reduces cognitive performance in the Stroop test. Scientific Reports 9, 1247 (2019). doi: 10.1038/s41598-018-37778-y
[46] Watanabe, Y. & Kakeya, H. Time-division and color multiplexing light-field display using liquid-crystal display panels to induce focal accommodation. Applied Optics 60, 1966-1972 (2021). doi: 10.1364/AO.413352
[47] Li, T. T. et al. View-dependent light-field display that supports accommodation using a commercially-available high pixel density LCD panel. SID Symposium Digest of Technical Papers 51, 1013-1016 (2020). doi: 10.1002/sdtp.14044
[48] St Hilaire, P. et al. Are stereograms holograms? A human perception analysis of sampled perspective holography. Journal of Physics: Conference Series 415, 012035 (2013). doi: 10.1088/1742-6596/415/1/012035
[49] Huang, H. K. & Hua, H. Effects of ray position sampling on the visual responses of 3D light field displays. Optics Express 27, 9343-9360 (2019). doi: 10.1364/OE.27.009343
[50] Zhan, T. et al. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0
[51] Balram, N. & Tošic, I. Light-field imaging and display systems. Information Display 32, 6-13 (2016).
[52] Jo, Y. et al. Tomographic projector: large scale volumetric display with uniform viewing experiences. ACM Transactions on Graphics 38, 21 (2019).
[53] Chang, J. H. R., Kumar, B. V. K. V. & Sankaranarayanan, A. C. Towards multifocal displays with dense focal stacks. ACM Transactions on Graphics 37, 198 (2018).
[54] Smalley, D. et al. Volumetric displays: turning 3-D inside-out. Optics and Photonics News 29, 26-33 (2018).
[55] Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486-490 (2018). doi: 10.1038/nature25176
[56] Jones, A. et al. Rendering for an interactive 360° light field display. ACM Transactions on Graphics 26, 40-es (2007). doi: 10.1145/1276377.1276427
[57] Hirayama, R. et al. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 575, 320-323 (2019). doi: 10.1038/s41586-019-1739-5
[58] Kumagai, K., Hasegawa, S. & Hayasaki, Y. Volumetric bubble display. Optica 4, 298-302 (2017). doi: 10.1364/OPTICA.4.000298
[59] Rogers, W. & Smalley, D. Simulating virtual images in optical trap displays. Scientific Reports 11, 7522 (2021). doi: 10.1038/s41598-021-86495-6
[60] Suzuki, K., Fukano, Y. & Oku, H. 1000-volume/s high-speed volumetric display for high-speed HMD. Optics Express 28, 29455-29468 (2020). doi: 10.1364/OE.401778
[61] Baek, H. et al. Wheel screen type lamina 3D display system with enhanced resolution. Current Optics and Photonics 5, 23-31 (2021).
[62] Sarakinos, A. & Lembessis, A. Color holography for the documentation and dissemination of cultural heritage: optoclonesTM from four museums in two countries. Journal of Imaging 5, 59 (2019). doi: 10.3390/jimaging5060059
[63] Gentet, P. et al. Evaluation of the realism of a full-color reflection H2 analog hologram recorded on ultra-fine-grain silver-halide material. Open Physics 17, 449-457 (2019). doi: 10.1515/phys-2019-0046
[64] Lohmann, A. W. & Paris, D. P. Binary fraunhofer holograms, generated by computer. Applied Optics 6, 1739-1748 (1967). doi: 10.1364/AO.6.001739
[65] Lesem, L. B, Hirsch, P. M. & Jordan, J. A. The kinoform: a new wavefront reconstruction device. IBM Journal of Research and Development 13, 150-155 (1969). doi: 10.1147/rd.132.0150
[66] Brown, B. R. & Lohmann, A. W. Computer-generated binary holograms. IBM Journal of research and Development 13, 160-168 (1969). doi: 10.1147/rd.132.0160
[67] Cameron, C. D. et al. Computational challenges of emerging novel true 3D holographic displays. Proceedings of SPIE 4109, Critical Technologies for the Future of Computing. San Diego, CA, United States: SPIE, 2000, 129-140.
[68] Slinger, C., Cameron, C. & Stanley, M. Computer-generated holography as a generic display technology. Computer 38, 46-53 (2005).
[69] Cooley, J. W. & Tukey, J. W. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19, 297-301 (1965). doi: 10.1090/S0025-5718-1965-0178586-1
[70] Bianco, V. et al. Quasi noise-free digital holography. Light: Science & Applications 5, e16142 (2016).
[71] Gerchberg, R. W. & Saxton, W. O. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237-250 (1972).
[72] Makowski, M. et al. Iterative design of multiplane holograms: experiments and applications. Optical Engineering 46, 045802 (2007). doi: 10.1117/1.2727379
[73] Makowski, M., Sypek, M. & Kolodziejczyk, A. Colorful reconstructions from a thin multi-plane phase hologram. Optics Express 16, 11618-11623 (2008). doi: 10.1364/OE.16.011618
[74] Velez-Zea, A. Iterative multiplane hologram generation with mixed constraint. Applied Optics 60, 224-231 (2021). doi: 10.1364/AO.408402
[75] Zhang, H., Cao, L. C. & Jin, G. F. Computer-generated hologram with occlusion effect using layer-based processing. Applied Optics 56, F138-F143 (2017). doi: 10.1364/AO.56.00F138
[76] Liu, J. P. & Liao, H. K. Fast occlusion processing for a polygon-based computer-generated hologram using the slice-by-slice silhouette method. Applied Optics 57, A215-A221 (2018). doi: 10.1364/AO.57.00A215
[77] Liu, S. T. et al. Occlusion calculation algorithm for computer generated hologram based on ray tracing. Optics Communications 443, 76-85 (2019). doi: 10.1016/j.optcom.2019.03.007
[78] Sahin, E. et al. Computer-generated holograms for 3D imaging: a survey. ACM Computing Surveys 53, 32 (2020).
[79] Su, Y. F. et al. Projection-type multiview holographic three-dimensional display using a single spatial light modulator and a directional diffractive device. IEEE Photonics Journal 10, 7000512 (2018).
[80] Wang, Z. et al. Resolution-enhanced holographic stereogram based on integral imaging using moving array lenslet technique. Applied Physics Letters 113, 221109 (2018). doi: 10.1063/1.5063273
[81] Zhang, X. et al. Resolution-enhanced holographic stereogram based on integral imaging using an intermediate-view synthesis technique. Optics Communications 457, 124656 (2020). doi: 10.1016/j.optcom.2019.124656
[82] Shi, L. et al. Towards real-time photorealistic 3d holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0
[83] Nishitsuji, T. et al. Review of fast calculation techniques for computer-generated holograms with the point-light-source-based model. IEEE Transactions on Industrial Informatics 13, 2447-2454 (2017). doi: 10.1109/TII.2017.2669200
[84] Tsang, P. W. M., Poon, T. C. & Wu, Y. M. Review of fast methods for point-based computer-generated holography [Invited]. Photonics Research 6, 837-846 (2018). doi: 10.1364/PRJ.6.000837
[85] Lucente, M. E. Interactive computation of holograms using a look-up table. Journal of Electronic Imaging 2, 28-34 (1993). doi: 10.1117/12.133376
[86] Sato, H. et al. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Scientific Reports 8, 1500 (2018). doi: 10.1038/s41598-018-19361-7
[87] Pi, D. P. et al. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display. Optics Express 28, 9833-9841 (2020). doi: 10.1364/OE.385388
[88] Wang, Z. et al. Simple and fast calculation algorithm for computer-generated hologram based on integral imaging using look-up table. Optics Express 26, 13322-13330 (2018). doi: 10.1364/OE.26.013322
[89] Wang, Y. C. et al. Hardware implementations of computer-generated holography: a review. Optical Engineering 59, 102413 (2020).
[90] Sugie, T. et al. High-performance parallel computing for next-generation holographic imaging. Nature Electronics 1, 254-259 (2018). doi: 10.1038/s41928-018-0057-5
[91] Shimobaba, T. & Ito, T. Computer Holography: Acceleration Algorithms and Hardware Implementations. (Boca Raton: CRC Press, 2019).
[92] Yu, C. Y. et al. Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimedia Tools and Applications 77, 4585-4608 (2018). doi: 10.1007/s11042-017-4637-6
[93] Sun, M. Y. et al. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods. Optics Express 28, 34994-35005 (2020). doi: 10.1364/OE.410314
[94] Desiderio, K. & Phillips, I. How Pixar’s animation has evolved over 24 years, from ‘toy story’ to ‘toy story 4’. (2019). at https://blog.adafruit.com/2019/06/30/how-pixars-animation-has-evolved-over-24-years-from-toy-story-to-toy-story-4/.
[95] Horisaki, R., Takagi, R. & Tanida, J. Deep-learning-generated holography. Applied Optics 57, 3859-3863 (2018). doi: 10.1364/AO.57.003859
[96] Lindsay, M. et al. Machine learning assisted holography. Proceedings of SPIE 11731, Computational Imaging VI. SPIE, 2021, 1173103.
[97] Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Transactions on Graphics 39, 185 (2020).
[98] Chakravarthula, P. et al. Learned hardware-in-the-loop phase retrieval for holographic near-eye displays. ACM Transactions on Graphics 39, 186 (2020).
[99] Lee, J. et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express 28, 27137-27154 (2020). doi: 10.1364/OE.402317
[100] Wu, J. C. et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Optics Letters 46, 2908-2911 (2021). doi: 10.1364/OL.425485
[101] Yanagihara, H. et al. Real-time three-dimensional video reconstruction of real scenes with deep depth using electro-holographic display system. Optics Express 27, 15662-15678 (2019). doi: 10.1364/OE.27.015662
[102] Zhao, Y. et al. Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding. Optics Communications 411, 166-169 (2018). doi: 10.1016/j.optcom.2017.11.040
[103] Sofana, R. S. et al. Future generation 5G wireless networks for smart grid: a comprehensive review. Energies 12, 2140 (2019). doi: 10.3390/en12112140
[104] Bohli, A. & Bouallegue, R. How to meet increased capacities by future green 5G networks: a survey. IEEE Access 7, 42220-42237 (2019). doi: 10.1109/ACCESS.2019.2907284
[105] El Rhammad, A. et al. Color digital hologram compression based on matching pursuit. Applied Optics 57, 4930-4942 (2018). doi: 10.1364/AO.57.004930
[106] Jiao, S. M. et al. Compression of phase-only holograms with JPEG standard and deep learning. Applied Sciences 8, 1258 (2018). doi: 10.3390/app8081258
[107] Stepień, P. et al. Hologram compression in quantitative phase imaging. Proceedings of SPIE 11249, Quantitative Phase Imaging VI. San Francisco, California, United States: SPIE, 2020, 112491Q.
[108] Liu, M. J., Yang, G. L. & Xie, H. Y. Method of computer-generated hologram compression and transmission using quantum back-propagation neural network. Optical Engineering 56, 023104 (2017). doi: 10.1117/1.OE.56.2.023104
[109] Zeng, Z. X. et al. Full-color holographic display with increased-viewing-angle [Invited]. Applied Optics 56, F112-F120 (2017). doi: 10.1364/AO.56.00F112
[110] Lum, Z. M. A. et al. Increasing pixel count of holograms for three-dimensional holographic display by optical scan-tiling. Optical Engineering 52, 015802 (2013). doi: 10.1117/1.OE.52.1.015802
[111] Onural, L., Yaraş, F. & Kang, H. Digital holographic three-dimensional video displays. Proceedings of the IEEE 99, 576-589 (2011). doi: 10.1109/JPROC.2010.2098430
[112] An, J. et al. Slim-panel holographic video display. Nature Communications 11, 5568 (2020). doi: 10.1038/s41467-020-19298-4
[113] Takaki, Y. & Yokouchi, M. Accommodation measurements of horizontally scanning holographic display. Optics Express 20, 3918-3931 (2012). doi: 10.1364/OE.20.003918
[114] Kozacki, T. et al. Fourier horizontal parallax only computer and digital holography of large size. Optics Express 29, 18173-18191 (2021). doi: 10.1364/OE.421186
[115] Henrie, A. et al. Hardware and software improvements to a low-cost horizontal parallax holographic video monitor. Applied Optics 57, A122-A133 (2018). doi: 10.1364/AO.57.00A122
[116] Sando, Y. et al. Real-time interactive holographic 3D display with a 360° horizontal viewing zone. Applied Optics 58, G1-G5 (2019). doi: 10.1364/AO.58.0000G1
[117] Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics 36, 85 (2017).
[118] Duan, X. H. et al. Full-color see-through near-eye holographic display with 80° field of view and an expanded eye-box. Optics Express 28, 31316-31329 (2020). doi: 10.1364/OE.399359
[119] Zaperty, W., Makowski, P. L. & Kozacki, T. Multi-SLM color holographic 3D display of real-world holographic content with numerical data adaptation. Frontiers in Optics 2017. Washington, D.C. United States: Optical Society of America, 2017, FTu4C.3.
[120] Leister, N. et al. Full-color interactive holographic projection system for large 3D scene reconstruction. Proceedings of SPIE 6911, Emerging Liquid Crystal Technologies III. San Jose, California, United States: SPIE, 2008, 202-211.
[121] Häussler, R., Leister, N. & Stolle, H. Large holographic 3D display for real-time computer-generated holography. Proceedings of SPIE 10335, Digital Optical Technologies 2017. Munich, Germany: SPIE, 2017, 177-187.
[122] Lazarev, G. et al. LCOS spatial light modulators: trends and applications. in Optical Imaging and Metrology: Advanced Technologies (eds Osten, W. & Reingand, N.) Ch. 1 (Weinheim: Wiley, 2012), 1-29.
[123] Wang, Y. M. et al. 2D broadband beamsteering with large-scale MEMS optical phased array. Optica 6, 557-562 (2019). doi: 10.1364/OPTICA.6.000557
[124] Dudley, D., Duncan, W. M. & Slaughter, J. Emerging digital micromirror device (DMD) applications. Proceedings of SPIE 4985, MOEMS Display and Imaging Systems. San Jose, CA, United States: SPIE, 2003, 14-25.
[125] Chlipala, M. & Kozacki, T. Color LED DMD holographic display with high resolution across large depth. Optics Letters 44, 4255-4258 (2019). doi: 10.1364/OL.44.004255
[126] Son, J. Y. et al. Holographic display based on a spatial DMD array. Optics Letters 38, 3173-3176 (2013). doi: 10.1364/OL.38.003173
[127] Jiao, S. M. et al. Complex-amplitude holographic projection with a digital micromirror device (DMD) and error diffusion algorithm. IEEE Journal of Selected Topics in Quantum Electronics 26, 2800108 (2020).
[128] Bloom, D. M. Grating light valve: revolutionizing display technology. Proceedings of SPIE 3013, Projection Displays III. San Jose, CA, United States: SPIE, 1997, 165-171.
[129] Saruta, K. et al. Nanometer-order control of MEMS ribbons for blazed grating light valves. Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul, Turkey: IEEE, 2006, 842-845.
[130] Lin, T. H. Implementation and characterization of a flexure-beam micromechanical spatial light modulator. Optical Engineering 33, 3643-3648 (1994). doi: 10.1117/12.181578
[131] Douglass, M. DMD reliability: a MEMS success story. Proceedings of SPIE 4980, Reliability, Testing, and Characterization of MEMS/MOEMS II. San Jose, CA, United States: SPIE, 2003, 1-11.
[132] Monk, D. W. Digital light processing: a new image technology for the television of the future. 1997 International Broadcasting Convention IBS 97. Amsterdam, Netherlands: IET, 1997, 581-586.
[133] Bartlett, T. A., McDonald, W. C. & Hall, J. N. Adapting Texas instruments DLP technology to demonstrate a phase spatial light modulator. Proceedings of SPIE 10932, Emerging Digital Micromirror Device Based Systems and Applications XI. San Francisco, California, United States: SPIE, 2019, 109320S.
[134] Bartlett, T. A. et al. Recent advances in the development of the Texas instruments phase-only microelectromechanical systems (MEMS) spatial light modulator. Proceedings of SPIE 11698, Emerging Digital Micromirror Device Based Systems and Applications XIII. SPIE, 2021, 116980O.
[135] Ketchum, R. S. & Blanche, P. A. Diffraction efficiency characteristics for MEMS-based phase-only spatial light modulator with nonlinear phase distribution. Photonics 8, 62 (2021). doi: 10.3390/photonics8030062
[136] Blanche, P. A. Photorefractive Organic Materials and Applications. (Cham: Springer, 2016).
[137] Li, X. et al. Highly photorefractive hybrid liquid crystal device for a video-rate holographic display. Optics Express 24, 8824-8831 (2016). doi: 10.1364/OE.24.008824
[138] Benton, S. A. Experiments in holographic video imaging. Proceedings of SPIE 10308, Holography. Tatabánya, Hungary: SPIE, 1990, 103080C.
[139] St-Hilaire, P. et al. Color images with the MIT holographic video display. Proceedings of SPIE 1667, Practical Holography VI. San Jose, CA, United States: SPIE, 1992, 73-84.
[140] Matteo, A. M., Tsai, C. S. & Do, N. Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO3 waveguides. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control 47, 16-28 (2000). doi: 10.1109/58.818745
[141] Smalley, D. E. et al. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313-317 (2013). doi: 10.1038/nature12217
[142] Qaderi, K. & Smalley, D. E. Leaky-mode waveguide modulators with high deflection angle for use in holographic video displays. Optics Express 24, 20831-20841 (2016). doi: 10.1364/OE.24.020831
[143] Jolly, S. et al. Progress in transparent flat-panel holographic displays enabled by guided-wave acousto-optics. Proceedings of SPIE 10558, Practical Holography XXXII: Displays, Materials, and Applications. San Francisco, California, United States: SPIE, 2018, 105580L.
[144] Bove, V. M. Jr. Holographic television. in Optical Holography: Materials, Theory and Applications (ed Blanche, P. A.) Ch. 4 (Amsterdam: Elsevier, 2020), 73-82.
[145] Sun, J. et al. Large-scale nanophotonic phased array. Nature 493, 195-199 (2013). doi: 10.1038/nature11727
[146] Sun, J. et al. Large-scale silicon photonic circuits for optical phased arrays. IEEE Journal of Selected Topics in Quantum Electronics 20, 8201115 (2014).
[147] Mahrous, H. et al. A compact 120 GHz monolithic silicon-on-silica electro-optic modulator. Optical and Quantum Electronics 52, 111 (2020). doi: 10.1007/s11082-020-2239-4
[148] Jarrahi, M. et al. Optical switching based on high-speed phased array optical beam steering. Applied Physics Letters 92, 014106 (2008). doi: 10.1063/1.2831005
[149] Porcel, M. A. G. et al. [INVITED] Silicon nitride photonic integration for visible light applications. Optics & Laser Technology 112, 299-306 (2019).
[150] Su, T. H. et al. Experimental demonstration of interferometric imaging using photonic integrated circuits. Optics Express 25, 12653-12665 (2017). doi: 10.1364/OE.25.012653
[151] Wang, H. J. et al. Broadband silicon nitride nanophotonic phased arrays for wide-angle beam steering. Optics Letters 46, 286-289 (2021). doi: 10.1364/OL.411820
[152] Larocque, H. et al. Beam steering with ultracompact and low-power silicon resonator phase shifters. Optics Express 27, 34639-34654 (2019). doi: 10.1364/OE.27.034639