[1] Liu, Z. G. et al. Nano-kirigami with giant optical chirality. Science Advances 4, eaat4436 (2018). doi: 10.1126/sciadv.aat4436
[2] Liu, Q. K. et al. Micrometer-sized electrically programmable shape-memory actuators for low-power microrobotics. Science Robotics 6, eabe6663 (2021 doi: 10.1126/scirobotics.abe6663
[3] Liu, Q. et al. Resist nanokirigami for multipurpose patterning. National Science Review 9, nwab231 (2022). doi: 10.1093/nsr/nwab231
[4] Zheng, M. J. et al. Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates. Microsystems & Nanoengineering 5, 54 (2019).
[5] Zhang, X. et al. Kirigami engineering—nanoscale structures exhibiting a range of controllable 3D configurations. Advanced Materials 33, 2005275 (2021). doi: 10.1002/adma.202005275
[6] Wang, K. et al. 3D chiral micro-pinwheels based on rolling-up kirigami technology. Small Methods 7 , 2201627 (2023).
[7] Xia, D. Y. & Notte, J. Nano-kirigami structures and branched nanowires fabricated by focused ion beam-induced milling, bending, and deposition. Advanced Materials Interfaces 9, 2200696 (2022). doi: 10.1002/admi.202200696
[8] Zhao, Y. H. et al. Mechanically reconfigurable metasurfaces: fabrications and applications. npj Nanophotonics 1, 16 (2024). doi: 10.1038/s44310-024-00010-z
[9] Liu, Z. G. et al. Fano resonance Rabi splitting of surface plasmons. Scientific Reports 7, 8010 (2017). doi: 10.1038/s41598-017-08221-5
[10] Liu, Z. G. et al. Invited Article: Nano-kirigami metasurfaces by focused-ion-beam induced close-loop transformation. APL Photonics 3, 100803 (2018). doi: 10.1063/1.5043065
[11] Liu, Z. G. et al. Fano‐enhanced circular dichroism in deformable stereo metasurfaces. Advanced Materials 32, 1907077 (2020). doi: 10.1002/adma.201907077
[12] Han, Y. et al. Reprogrammable optical metasurfaces by electromechanical reconfiguration. Optics Express 29, 30751-30760 (2021). doi: 10.1364/OE.434321
[13] Zhao, Y. H. et al. Thermal emission manipulation enabled by nano-kirigami structures. Small 20, 2305171 (2024). doi: 10.1002/smll.202305171
[14] Chen, S. S. et al. Electromechanically reconfigurable optical nano-kirigami. Nature Communications 12, 1299 (2021). doi: 10.1038/s41467-021-21565-x
[15] Chen, S. S. et al. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with “folding”. Light: Science & Applications 9 , 75 (2020).
[16] Chen, Y. Y. et al. Nano-kirigami/origami fabrications and optical applications. Applied Physics Letters 124, 160501 (2024). doi: 10.1063/5.0199052
[17] Syms, R. R. A. et al. Surface tension-powered self-assembly of microstructures - the state-of-the-art. Journal of Microelectromechanical Systems 12, 387-417 (2003). doi: 10.1109/JMEMS.2003.811724
[18] Cho, J. H. et al. Nanoscale origami for 3D optics. Small 7, 1943-1948 (2011). doi: 10.1002/smll.201100568
[19] Pandey, S. et al. Algorithmic design of self-folding polyhedra. Proceedings of the National Academy of Sciences of the United States of America 108, 19885-19890 (2011).
[20] Schmidt, O. G. & Eberl, K. Thin solid films roll up into nanotubes. Nature 410, 168 (2001). doi: 10.1038/35065525
[21] Li, X. L. Self-rolled-up microtube ring resonators: a review of geometrical and resonant properties. Advances in Optics and Photonics 3, 366-387 (2011). doi: 10.1364/AOP.3.000366
[22] Blees, M. K. et al. Graphene kirigami. Nature 524, 204-207 (2015). doi: 10.1038/nature14588
[23] Liu, W. J. et al. Metal-assisted transfer strategy for construction of 2D and 3D nanostructures on an elastic substrate. ACS Nano 13, 440-448 (2019). doi: 10.1021/acsnano.8b06623
[24] Zhang, Y. H. et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proceedings of the National Academy of Sciences of the United States of America 112, 11757-11764 (2015).
[25] Cui, A. J. et al. Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances. Light: Science & Applications 4 , e308 (2015).
[26] Xia, L. et al. 3D nanohelix fabrication and 3D nanometer assembly by focused ion beam stress-introducing technique. 19th IEEE International Conference on Micro Electro Mechanical Systems. Istanbul: IEEE, 2006, 118-121.
[27] Chalapat, K. et al. Self-organized origami structures via ion-induced plastic strain. Advanced Materials 25, 91-95 (2013). doi: 10.1002/adma.201202549
[28] Li, J. F. & Liu, Z. G. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics 7, 1637-1650 (2018). doi: 10.1515/nanoph-2018-0117
[29] Melchiorri, C. & Tornambè, A. Modelling and Control of Mechanisms and Robots. (Singapore: World Scientific, 1996), 304.
[30] Buchner, T. Kinematics of 3D folding structures for nanostructured origami. PhD thesis, Massachussets Institute of Technology, Cambridge, 2003.
[31] Pan, R. H. et al. Asymmetrical chirality in 3D bended metasurface. Advanced Functional Materials 31, 2100689 (2021). doi: 10.1002/adfm.202100689
[32] Wang, C. et al. Giant intrinsic chirality in curled metasurfaces. ACS Photonics 7, 3415-3422 (2020). doi: 10.1021/acsphotonics.0c01230
[33] Pan, R. H. et al. Rapid bending origami in micro/nanoscale toward a versatile 3D metasurface. Laser & Photonics Reviews 14, 1900179 (2020).
[34] Yang, S. Y. et al. Surface plasmon polariton mediated multiple toroidal resonances in 3D folding metamaterials. ACS Photonics 4, 2650-2658 (2017). doi: 10.1021/acsphotonics.7b00529
[35] Zheng, R. X. et al. Bidirectional origami inspiring versatile 3D metasurface. Advanced Materials Technologies 7, 2200373 (2022). doi: 10.1002/admt.202200373
[36] Tian, X. M. et al. Five-fold plasmonic Fano resonances with giant bisignate circular dichroism. Nanoscale 10, 16630-16637 (2018). doi: 10.1039/C8NR05277H
[37] Yang, S. Y. et al. Spin-selective transmission in chiral folded metasurfaces. Nano Letters 19, 3432-3439 (2019). doi: 10.1021/acs.nanolett.8b04521
[38] Liu, X. et al. Nano-kirigami enabled chiral nano-cilia with enhanced circular dichroism at visible wavelengths. Nanophotonics 12, 1459-1468 (2023). doi: 10.1515/nanoph-2022-0543
[39] Han, Y. et al. Cascaded multilayer nano-kirigami for extensible 3D nanofabrication and visible light manipulation. Photonics Research 8, 1506-1511 (2020). doi: 10.1364/PRJ.398467
[40] Liu, X. et al. Reconfigurable plasmonic nanoslits and tuneable Pancharatnam-Berry geometric phase based on electromechanical nano-kirigami [Invited]. Optical Materials Express 11, 3381-3391 (2021). doi: 10.1364/OME.438996
[41] Li, X. et al. Phase enabled circular dichroism reversal in twisted Bi-chiral propeller metamolecule arrays. Advanced Optical Materials 9, 2101191 (2021). doi: 10.1002/adom.202101191
[42] Ji, C. Y. et al. Artificial propeller chirality and counterintuitive reversal of circular dichroism in twisted meta-molecules. Nano Letters 21, 6828-6834 (2021). doi: 10.1021/acs.nanolett.1c01802
[43] Tang, Y. T. et al. Nano-kirigami metasurface with giant nonlinear optical circular dichroism. Laser & Photonics Reviews 14, 2000085 (2020).
[44] Lv, F. et al. Asymmetric transmission polarization conversion of chiral metamaterials with controllable switches based on VO2. Optical Materials 114, 110667 (2021). doi: 10.1016/j.optmat.2020.110667
[45] Menzel, C. et al. Asymmetric transmission of linearly polarized light at optical metamaterials. Physical Review Letters 104, 253902 (2010). doi: 10.1103/PhysRevLett.104.253902
[46] Huang, C. et al. Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures. Physical Review B 85, 195131 (2012). doi: 10.1103/PhysRevB.85.195131
[47] Luo, W. J. et al. Photonic spin hall effect with nearly 100% efficiency. Advanced Optical Materials 3, 1102-1108 (2015). doi: 10.1002/adom.201500068
[48] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[49] Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Letters 12, 5750-5755 (2012). doi: 10.1021/nl303031j
[50] Li, J. et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–Berry coding metasurfaces. Nanoscale 11, 5746-5753 (2019). doi: 10.1039/C9NR00675C
[51] Xie, X. et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Physical Review Letters 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902
[52] Wang, C. et al. Dynamically tunable deep subwavelength high-order anomalous reflection using graphene metasurfaces. Advanced Optical Materials 6, 1701047 (2018). doi: 10.1002/adom.201701047
[53] Sun, S. L. et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Letters 12, 6223-6229 (2012). doi: 10.1021/nl3032668
[54] Yang, Y. M. et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Letters 14, 1394-1399 (2014). doi: 10.1021/nl4044482
[55] Xie, X. et al. Plasmonic metasurfaces for simultaneous thermal infrared invisibility and holographic illusion. Advanced Functional Materials 28, 1706673 (2018). doi: 10.1002/adfm.201706673
[56] Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Physical Review Letters 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901
[57] Yang, W. H. et al. Dynamic bifunctional metasurfaces for holography and color display. Advanced Materials 33, 2101258 (2021). doi: 10.1002/adma.202101258
[58] Li, S. Y. et al. Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024). doi: 10.1038/s41928-024-01129-9