[1] Temmler, A. et al. Influence of laser polishing on surface roughness and microstructural properties of the remelted surface boundary layer of tool steel H11. Materials & Design 192, 108689 (2020).
[2] Temmler, A. & Pirch, N. Investigation on the mechanism of surface structure formation during laser remelting with modulated laser power on tool steel H11. Applied Surface Science 526, 146393 (2020). doi: 10.1016/j.apsusc.2020.146393
[3] Bhaduri, D. et al. Pulsed laser polishing of selective laser melted aluminium alloy parts. Applied Surface Science 558, 149887 (2021). doi: 10.1016/j.apsusc.2021.149887
[4] Li, Y. H., Zhang, Z. & Guan, Y. C. Thermodynamics analysis and rapid solidification of laser polished Inconel 718 by selective laser melting. Applied Surface Science 511, 145423 (2020). doi: 10.1016/j.apsusc.2020.145423
[5] Chen, C. & Tsai, H. L. Fundamental study of the bulge structure generated in laser polishing process. Optics and Lasers in Engineering 107, 54-61 (2018).
[6] Temmler, A. et al. Numerical and experimental investigation on formation of surface structures in laser remelting for additive-manufactured Inconel 718. Surface and Coatings Technology 403, 126370 (2020). doi: 10.1016/j.surfcoat.2020.126370
[7] Liu, H. G. et al. Optical quality laser polishing of CVD diamond by UV pulsed laser irradiation. Advanced Optical Materials 9, 2100537 (2021). doi: 10.1002/adom.202100537
[8] Temmler, A. et al. Investigation on laser beam figuring of fused silica using microsecond pulsed CO2 laser radiation. Applied Surface Science 555, 149609 (2021). doi: 10.1016/j.apsusc.2021.149609
[9] Zhang, C. C. et al. Influence of pulse length on heat affected zones of evaporatively-mitigated damages of fused silica optics by CO2 laser. Optics and Lasers in Engineering 125, 105857 (2020). doi: 10.1016/j.optlaseng.2019.105857
[10] Sassmannshausen, A., Brenner, A. & Finger, J. Ultrashort pulse laser polishing by continuous surface melting. Journal of Materials Processing Technology 293, 117058 (2021). doi: 10.1016/j.jmatprotec.2021.117058
[11] Tan, C. et al. Experimental and theoretical investigation of localized CO2 laser interaction with fused silica during the process of surface damage mitigation. Results in Physics 16, 102936 (2020). doi: 10.1016/j.rinp.2020.102936
[12] Matthews, M. J. et al. Micro-shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams. Advanced Engineering Materials 17, 247-252 (2015). doi: 10.1002/adem.201400349
[13] Ukar, E. et al. Laser polishing of tool steel with CO2 laser and high-power diode laser. International Journal of machine tools and manufacture 50, 115-125 (2010). doi: 10.1016/j.ijmachtools.2009.09.003
[14] Ukar, E. et al. An industrial approach of laser polishing with different laser sources: Industrielle Methode zum Laserpolieren mit verschiedenen Laserstrahlquellen. Materialwissenschaft und Werkstofftechnik 46, 661-667 (2015). doi: 10.1002/mawe.201500324
[15] Gisario, A., Barletta, M. & Veniali, F. Laser polishing: a review of a constantly growing technology in the surface finishing of components made by additive manufacturing. The International Journal of Advanced Manufacturing Technology 120, 1433-1472 (2022). doi: 10.1007/s00170-022-08840-x
[16] Liu, E. J. et al. Surface morphology evolution and tribological behavior in nanosecond pulsed laser polishing of S136 mold steel. Journal of Materials Research and Technology 22, 3230-3244 (2023). doi: 10.1016/j.jmrt.2022.12.153
[17] Temmler, A., Graichen, K. & Donath, J. Laser polishing in medical engineering. Laser Technik Journal 7, 53-57 (2010). doi: 10.1002/latj.201090028
[18] Liu, E. J. et al. Advancements and Developments of Laser Polishing Technology. Chinese Journal of Lasers 50, 1602202 (2023). doi: 10.3788/CJL221369
[19] Zhang, C., Zhou, J. & Shen, H. Role of capillary and thermocapillary forces in laser polishing of metals. Journal of Manufacturing Science and Engineering 139, 041019 (2017). doi: 10.1115/1.4035468
[20] Li, K. et al. Numerical analyses of molten pool evolution in laser polishing Ti6Al4V. Journal of Manufacturing Processes 58, 574-584 (2020). doi: 10.1016/j.jmapro.2020.08.045
[21] Li, K. et al. Numerical Simulation of effect of different initial morphologies on melt hydrodynamics in Laser polishing of Ti6Al4V. Micromachines 12, 581 (2021). doi: 10.3390/mi12050581
[22] Li, K. et al. A study on transient molten pool dynamics in laser polishing of Ti6Al4V using numerical simulation. Journal of Manufacturing Processes 65, 478-490 (2021). doi: 10.1016/j.jmapro.2021.03.045
[23] Yan, Z. X. et al. Numerical simulation on nanosecond laser ablation of titanium considering plasma shield and evaporation-affected surface thermocapillary convection. Optics Communications 453, 124384 (2019). doi: 10.1016/j.optcom.2019.124384
[24] Zhao, J. G. et al. Understanding femtosecond laser internal scribing of diamond by atomic simulation: Phase transition, structure and property. Carbon 175, 352-363 (2021). doi: 10.1016/j.carbon.2021.01.111
[25] Yan, B. et al. Surface modeling and component analysis of picosecond laser ablation of CVD diamond. Diamond and Related Materials 111, 108191 (2021). doi: 10.1016/j.diamond.2020.108191
[26] Xu, F. et al. Numerical analysis of Nd: YAG pulsed laser polishing CVD self-standing diamond film. Chinese Journal of Mechanical Engineering 26, 121-127 (2013). doi: 10.3901/CJME.2013.01.121
[27] Wang, D. et al. Top-hat and Gaussian laser beam smoothing of ground fused silica surface. Optics & Laser Technology 127, 106141 (2020).
[28] Weingarten, C. et al. Laser polishing and laser shape correction of optical glass. Journal of Laser Applications 29, 011702 (2017). doi: 10.2351/1.4974905
[29] Jiang, Y. et al. Dependence of morphology evolution of fused silica on irradiation parameters of CO2 laser. Journal of Non-Crystalline Solids 568, 120943 (2021). doi: 10.1016/j.jnoncrysol.2021.120943
[30] He, T. et al. Super-smooth surface demonstration and the physical mechanism of CO2 laser polishing of fused silica. Optics Letters 43, 5777-5780 (2018). doi: 10.1364/OL.43.005777
[31] Badrinarayanan, P. et al. The glass transition temperature versus the fictive temperature. Journal of Non-crystalline solids 353, 2603-2612 (2007). doi: 10.1016/j.jnoncrysol.2007.04.025
[32] Ryu, S. R. & Tomozawa, M. Fictive temperature measurement of amorphous SiO2 films by IR method. Journal of non-crystalline solids 352, 3929-3935 (2006). doi: 10.1016/j.jnoncrysol.2006.07.005
[33] Mai, T. A. & Lim, G. C. Micromelting and its effects on surface topography and properties in laser polishing of stainless steel. Journal of Laser Applications 16, 221-228 (2004). doi: 10.2351/1.1809637
[34] Chow, M. T. C. et al. Experimental statistical analysis of laser micropolishing process. 2010 International Symposium on Optomechatronic Technologies. Toronto: IEEE, 2010, 1-6.
[35] Dai, D. H. & Gu, D. D. Effect of metal vaporization behavior on keyhole-mode surface morphology of selective laser melted composites using different protective atmospheres. Applied Surface Science 355, 310-319 (2015). doi: 10.1016/j.apsusc.2015.07.044
[36] Zhao, S. et al. Analysis of molten pool dynamics and surface smoothing time scale in laser polishing alloy materials. Optics & Laser Technology 161, 109183 (2023).
[37] Zhou, J. et al. Microstructural evolution during multiple scans in laser polishing of Ti6Al4V. Journal of Manufacturing Processes 75, 1202-1216 (2022). doi: 10.1016/j.jmapro.2022.01.072
[38] Richter, B. et al. High-speed X-ray investigation of melt dynamics during continuous-wave laser remelting of selective laser melted Co-Cr alloy. CIRP Annals 68, 229-232 (2019). doi: 10.1016/j.cirp.2019.04.110
[39] Zhao, C. et al. Critical instability at moving keyhole tip generates porosity in laser melting. Science 370, 1080-1086 (2020). doi: 10.1126/science.abd1587
[40] Ren, Z. S. et al. Machine learning–aided real-time detection of keyhole pore generation in laser powder bed fusion. Science 379, 89-94 (2023). doi: 10.1126/science.add4667
[41] Fratz, M. et al. Inline application of digital holography [Invited]. Applied Optics 58, G120-G126 (2019). doi: 10.1364/AO.58.00G120
[42] Asghari, H. Visible wavelength time-stretch optical coherence tomography. Optics Express 31, 24085-24096 (2023). doi: 10.1364/OE.492753
[43] Mahjoubfar, A. et al. Time stretch and its applications. Nature Photonics 11, 341-351 (2017). doi: 10.1038/nphoton.2017.76
[44] Lei, C. et al. Optical time-stretch imaging: Principles and applications. Applied Physics Reviews 3, 011102 (2016). doi: 10.1063/1.4941050