[1] Ning, Z. L., Huang, J. & Wang, X. J. Vehicular fog computing: enabling real-time traffic management for smart cities. IEEE Wireless Communications 26, 87-93 (2019).
[2] Green, R. B. et al. Optically transparent antennas and filters: a smart city concept to alleviate infrastructure and network capacity challenges. IEEE Antennas and Propagation Magazine 61, 37-47 (2019).
[3] Clasen, G. & Langley, R. J. Meshed patch antenna integrated into car windscreen. Electronics Letters 36, 781-782 (2000). doi: 10.1049/el:20000616
[4] Turpin, T. W. & Baktur, R. Meshed patch antennas integrated on solar cells. IEEE Antennas and Wireless Propagation Letters 8, 693-696 (2009). doi: 10.1109/LAWP.2009.2025522
[5] Ha, T. D. et al. Optically transparent metasurface radome for RCS reduction and gain enhancement of multifunctional antennas. IEEE Transactions on Antennas and Propagation 71, 67-77 (2023). doi: 10.1109/TAP.2022.3215247
[6] Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Science Advances 4, eaap9841 (2018).
[7] Chen, Z. X. et al. Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir 29, 13836-13842 (2013).
[8] Liu, H. Y. et al. Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices and Microstructures 48, 458-484 (2010). doi: 10.1016/j.spmi.2010.08.011
[9] Tuna, O. et al. High quality ITO thin films grown by dc and RF sputtering without oxygen. Journal of Physics D: Applied Physics 43, 055402 (2010). doi: 10.1088/0022-3727/43/5/055402
[10] Inganäs, O. Avoiding indium. Nature Photonics 5, 201-202 (2011). doi: 10.1038/nphoton.2011.46
[11] Na, S. I. et al. Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Advanced Materials 20, 4061-4067 (2008). doi: 10.1002/adma.200800338
[12] Pang, S. P. et al. Graphene as transparent electrode material for organic electronics. Advanced Materials 23, 2779-2795 (2011). doi: 10.1002/adma.201100304
[13] Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology 5, 574-578 (2010). doi: 10.1038/nnano.2010.132
[14] Lee, J. Y. et al. Solution-processed metal nanowire mesh transparent electrodes. Nano Letters 8, 689-692 (2008). doi: 10.1021/nl073296g
[15] Lee, S. Y. et al. Optically transparent nano-patterned antennas: a review and future directions. Applied Sciences 8, 901 (2018). doi: 10.3390/app8060901
[16] Kosuga, S. et al. Graphene-based optically transparent dipole antenna. Applied Physics Letters 110, 233102 (2017). doi: 10.1063/1.4984956
[17] Kosuga, S. et al. Radiation properties of graphene-based optically transparent dipole antenna. Microwave and Optical Technology Letters 60, 2992-2998 (2018). doi: 10.1002/mop.31422
[18] Yasin, T. & Baktur, R. Bandwidth enhancement of meshed patch antennas through proximity coupling. IEEE Antennas and Wireless Propagation Letters 16, 2501-2504 (2017). doi: 10.1109/LAWP.2017.2726562
[19] Ding, C., Liu, L. Z. & Luk, K. M. An optically transparent dual-polarized stacked patch antenna with metal-mesh films. IEEE Antennas and Wireless Propagation Letters 18, 1981-1985 (2019). doi: 10.1109/LAWP.2019.2935694
[20] Tung, P. D. & Jung, C. W. Optically transparent wideband dipole and patch external antennas using metal mesh for UHD TV applications. IEEE Transactions on Antennas and Propagation 68, 1907-1917 (2020). doi: 10.1109/TAP.2019.2950077
[21] Zhao, G. Q. et al. Stable ultrathin partially oxidized copper film electrode for highly efficient flexible solar cells. Nature Communications 6, 8830 (2015). doi: 10.1038/ncomms9830
[22] Ghosh, D. S. et al. Widely transparent electrodes based on ultrathin metals. Optics Letters 34, 325-327 (2009). doi: 10.1364/OL.34.000325
[23] Zhang, C. et al. Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Advanced Optical Materials 9, 2001298 (2021). doi: 10.1002/adom.202001298
[24] O’Connor, B. et al. Transparent and conductive electrodes based on unpatterned, thin metal films. Applied Physics Letters 93, 223304 (2008). doi: 10.1063/1.3028046
[25] Zhang, C. et al. An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Advanced Materials 26, 5696-5701 (2014). doi: 10.1002/adma.201306091
[26] Gu, D. E. et al. Ultrasmooth and thermally stable silver-based thin films with subnanometer roughness by aluminum doping. ACS Nano 8, 10343-10351 (2014). doi: 10.1021/nn503577c
[27] Zhao, D. W. et al. High-performance Ta2O5/Al-doped Ag electrode for resonant light harvesting in efficient organic solar cells. Advanced Energy Materials 5, 1500768 (2015). doi: 10.1002/aenm.201500768
[28] Zhang, C. et al. High-performance large-scale flexible optoelectronics using ultrathin silver films with tunable properties. ACS Applied Materials & Interfaces 11, 27216-27225 (2019).
[29] Zhang, C. et al. High-performance doped silver films: overcoming fundamental material limits for nanophotonic applications. Advanced Materials 29, 1605177 (2017). doi: 10.1002/adma.201605177
[30] Zhang, C. et al. Robust extraction of hyperbolic metamaterial permittivity using total internal reflection ellipsometry. ACS Photonics 5, 2234-2242 (2018). doi: 10.1021/acsphotonics.8b00086
[31] Wang, H. Y. et al. Highly transparent and broadband electromagnetic interference shielding based on ultrathin doped Ag and conducting oxides hybrid film structures. ACS Applied Materials & Interfaces 11, 11782-11791 (2019).
[32] Wang, H. Y. et al. Transparent perfect microwave absorber employing asymmetric resonance cavity. Advanced Science 6, 1901320 (2019). doi: 10.1002/advs.201901320
[33] Zhang, C. et al. Tantalum pentoxide: a new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. Light: Science & Applications 13, 23 (2024).
[34] Kirsch, N. J. et al. Optically transparent conductive polymer RFID meandering dipole antenna. Proceedings of 2009 IEEE International Conference on RFID. Orlando, FL, USA: IEEE, 2009, 278-282.
[35] Hong, S., Kim, Y. & Jung, C. W. Transparent microstrip patch antennas with multilayer and metal-mesh films. IEEE Antennas and Wireless Propagation Letters 16, 772-775 (2017). doi: 10.1109/LAWP.2016.2602389
[36] Grande, M. et al. Optically transparent wideband CVD graphene-based microwave antennas. Applied Physics Letters 112, 251103 (2018). doi: 10.1063/1.5037409
[37] Kosuga, S. et al. Optically transparent antenna based on carrier-doped three-layer stacked graphene. AIP Advances 11, 035136 (2021). doi: 10.1063/5.0037907
[38] Potti, D. et al. A novel optically transparent UWB antenna for automotive MIMO communications. IEEE Transactions on Antennas and Propagation 69, 3821-3828 (2021). doi: 10.1109/TAP.2020.3044383
[39] Goliya, Y. et al. Next generation antennas based on screen-printed and transparent silver nanowire films. Advanced Optical Materials 7, 1900995 (2019). doi: 10.1002/adom.201900995
[40] Hautcoeur, J. et al. Comparison of the microwave performance of transparent wire monopole antennas based on silver films. Journal of Electronic Materials 42, 552-557 (2013). doi: 10.1007/s11664-012-2338-5
[41] Suh, Y. H. & Chang, K. Low cost microstrip-fed dual frequency printed dipole antenna for wireless communications. Electronics Letters 36, 1177-1179 (2000). doi: 10.1049/el:20000880
[42] Zhang, Z. J. et al. Dual-band WLAN dipole antenna using an internal matching circuit. IEEE Transactions on Antennas and Propagation 53, 1813-1818 (2005). doi: 10.1109/TAP.2005.846784
[43] Mohring, B. N., Gabler, B. & Limbach, M. Antenna in-situ performance analysis for the hypersonic flight vehicle HEXAFLY: employing measurement data in a simulation model. IEEE Antennas and Propagation Magazine 63, 89-99 (2021).
[44] Huang, J. & Densmore, A. C. Microstrip Yagi array antenna for mobile satellite vehicle application. IEEE Transactions on Antennas and Propagation 39, 1024-1030 (1991). doi: 10.1109/8.86924
[45] Qian, Y. et al. Microstrip-fed quasi-Yagi antenna with broadband characteristics. Electronics Letters 34, 2194-2196 (1998). doi: 10.1049/el:19981583
[46] Kaneda, N. et al. A broadband planar quasi-Yagi antenna. IEEE Transactions on Antennas and Propagation 50, 1158-1160 (2002). doi: 10.1109/TAP.2002.801299
[47] Elsheakh, D. M. & Abdallah, E. A. Ultra wide band planar printed quasi-Yagi antenna with size reduction for water detection in the Egyptian desert. Microwave and Optical Technology Letters 57, 226-233 (2015). doi: 10.1002/mop.28812
[48] Yang, F. et al. Wide-band E-shaped patch antennas for wireless communications. IEEE Transactions on Antennas and Propagation 49, 1094-1100 (2001). doi: 10.1109/8.933489
[49] Guha, D., Biswas, M. & Antar, Y. M. M. Microstrip patch antenna with defected ground structure for cross polarization suppression. IEEE Antennas and Wireless Propagation Letters 4, 455-458 (2005). doi: 10.1109/LAWP.2005.860211
[50] Foroozesh, A. & Shafai, L. Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation 58, 258-270 (2010). doi: 10.1109/TAP.2009.2037702
[51] Ge, Y. H., Esselle, K. P. & Bird, T. S. The use of simple thin partially reflective surfaces with positive reflection phase gradients to design wideband, low-profile EBG resonator antennas. IEEE Transactions on Antennas and Propagation 60, 743-750 (2012). doi: 10.1109/TAP.2011.2173113
[52] Bai, X. D. et al. Radiation‐type programmable metasurface for direct manipulation of electromagnetic emission. Laser & Photonics Reviews 16, 2200140 (2022).
[53] Bai, X. D. et al. Time-modulated transmissive programmable metasurface for low sidelobe beam scanning. Research 2022, 9825903 (2022).
[54] Hilfiker, J. N. et al. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry. Thin Solid Films 516, 7979-7989 (2008). doi: 10.1016/j.tsf.2008.04.060