[1] |
Huang, Y. G. et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light: Science & Applications 9 , 105 (2020). |
[2] |
Lee, T. Y. et al. Technology and applications of micro-LEDs: their characteristics, fabrication, advancement, and challenges. ACS Photonics 9, 2905-2930 (2022). doi: 10.1021/acsphotonics.2c00285 |
[3] |
Lee, V. W., Twu, N. & Kymissis, I. Micro-LED technologies and applications. Information Display 32, 16-23 (2016). |
[4] |
Cok, R. S. et al. Inorganic light-emitting diode displays using micro-transfer printing. Journal of the Society for Information Display 25, 589-609 (2017). doi: 10.1002/jsid.610 |
[5] |
Lee, D. et al. Fluidic self-assembly for MicroLED displays by controlled viscosity. Nature 619, 755-760 (2023). doi: 10.1038/s41586-023-06167-5 |
[6] |
Yan, C. M. et al. Eliminating the residual ultraviolet excitation light and increasing quantum dot emission intensity in LED display devices. IEEE Transactions on Electron Devices 68, 584-591 (2021). doi: 10.1109/TED.2020.3044556 |
[7] |
Kim, Y. H. et al. Review—phosphor plates for high-power LED applications: challenges and opportunities toward perfect lighting. ECS Journal of Solid State Science and Technology 7, R3134 (2018). doi: 10.1149/2.0181801jss |
[8] |
Panfil, Y. E., Oded, M. & Banin, U. Colloidal quantum nanostructures: emerging materials for display applications. Angewandte Chemie International Edition 57, 4274-4295 (2018). doi: 10.1002/anie.201708510 |
[9] |
García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021). doi: 10.1126/science.aaz8541 |
[10] |
Chen, J. C. et al. A Review on quantum dot‐based color conversion layers for Mini/Micro‐LED displays: packaging, light management, and pixelation. Advanced Optical Materials 12, 2300873 (2024). doi: 10.1002/adom.202300873 |
[11] |
Lin, C. C. et al. Fabricating quantum dot color conversion layers for micro-LED-based augmented reality displays. ACS Applied Optical Materials 2, 1303-1313 (2024). doi: 10.1021/acsaom.3c00104 |
[12] |
Meng, T. T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nature Photonics 16, 297-303 (2022). doi: 10.1038/s41566-022-00960-w |
[13] |
Kwon, J. I. et al. Ultrahigh-resolution full-color perovskite nanocrystal patterning for ultrathin skin-attachable displays. Science Advances 8, eadd0697 (2022). doi: 10.1126/sciadv.add0697 |
[14] |
Shi, L. F. et al. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Advanced Functional Materials 29, 1903648 (2019). doi: 10.1002/adfm.201903648 |
[15] |
Lemarchand, J. et al. Challenges, prospects, and emerging applications of inkjet-printed electronics: a chemist's point of view. Angewandte Chemie International Edition 61, e202200166 (2022). doi: 10.1002/anie.202200166 |
[16] |
Lin, C. T. et al. Design of quantum dot color convertors for inkjet-printed optoelectronic devices: violet-converted full color Mini-LED. Advanced Materials Technologies 9, 2301370 (2024). doi: 10.1002/admt.202301370 |
[17] |
Xuan, T. T. et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. The Journal of Physical Chemistry Letters 11, 5184-5191 (2020). doi: 10.1021/acs.jpclett.0c01451 |
[18] |
Onses, M. S. et al. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 11, 4237-4266 (2015). doi: 10.1002/smll.201500593 |
[19] |
Li, H. G. et al. High-resolution pixelated light emitting diodes based on electrohydrodynamic printing and coffee-ring-free quantum dot film. Advanced Materials Technologies 5, 2000401 (2020). doi: 10.1002/admt.202000401 |
[20] |
Yang, X. et al. Dual-ligand red perovskite ink for electrohydrodynamic printing color conversion arrays over 2540 dpi in near-eye micro-LED display. Nano Letters 24, 3661-3669 (2024). doi: 10.1021/acs.nanolett.3c04927 |
[21] |
Liang, Y. et al. Direct electrohydrodynamic patterning of high-performance all metal oxide thin-film electronics. ACS Nano 13, 13957-13964 (2019). doi: 10.1021/acsnano.9b05715 |
[22] |
Hahm, D. et al. Direct patterning of colloidal quantum dots with adaptable dual-ligand surface. Nature Nanotechnology 17, 952-958 (2022). doi: 10.1038/s41565-022-01182-5 |
[23] |
Park, J. S. et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display. Nano Letters 16, 6946-6953 (2016). doi: 10.1021/acs.nanolett.6b03007 |
[24] |
Zhang, P. P. et al. Direct in situ photolithography of perovskite quantum dots based on photocatalysis of lead bromide complexes. Nature Communications 13, 6713 (2022). doi: 10.1038/s41467-022-34453-9 |
[25] |
Liu, D. et al. Direct optical patterning of perovskite nanocrystals with ligand cross-linkers. Science Advances 8, eabm8433 (2022). doi: 10.1126/sciadv.abm8433 |
[26] |
Pan, J. A., Ondry, J. C. & Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals via photoinduced ligand cleavage with postpatterning chemical modification and electronic coupling. Nano Letters 21, 7609-7616 (2021). doi: 10.1021/acs.nanolett.1c02249 |
[27] |
Qie, Y. et al. Ligand-nondestructive direct photolithography assisted by semiconductor polymer cross-linking for high-resolution quantum dot light-emitting diodes. Nano Letters 24, 1254-1260 (2024). doi: 10.1021/acs.nanolett.3c04230 |
[28] |
Zou, C. et al. Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Letters 20, 3710-3717 (2020). doi: 10.1021/acs.nanolett.0c00701 |
[29] |
Bae, J. et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nature Communications 13, 1862 (2022). doi: 10.1038/s41467-022-29538-4 |
[30] |
Liu, Y. F. et al. Highly soluble CsPbBr3 perovskite quantum dots for solution-processed light-emission devices. ACS Applied Nano Materials 4, 1162-1174 (2021). doi: 10.1021/acsanm.0c02797 |
[31] |
Song, J. Z. et al. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Advanced Materials 30 , 1800764 (2018). |
[32] |
Mo, Q. H. et al. Room temperature synthesis of stable silica-coated CsPbBr3 quantum dots for amplified spontaneous emission. Photonics Research 8, 1605-1612 (2020). doi: 10.1364/PRJ.399845 |
[33] |
Kachhap, S. et al. Expanding the emission of CsPbBr3 nanocrystals in the blue region. ACS Applied Optical Materials 1, 1974-1986 (2023). doi: 10.1021/acsaom.3c00317 |
[34] |
Dai, X. L. et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Advanced Materials 29, 1607022 (2017). doi: 10.1002/adma.201607022 |
[35] |
Lin, S. Y. et al. Multi-primary-color quantum-dot down-converting films for display applications. Optics Express 27, 28480-28493 (2019). doi: 10.1364/OE.27.028480 |
[36] |
Wu, Y. F. et al. Full-color realization of micro-LED displays. Nanomaterials 10, 2482 (2020). doi: 10.3390/nano10122482 |
[37] |
Karadza, B. et al. Bridging the green gap: monochromatic InP-based quantum-dot-on-chip LEDs with over 50% color conversion efficiency. Nano Letters 23, 5490-5496 (2023). doi: 10.1021/acs.nanolett.3c00652 |