[1] Lütjering, G. & Williams, J. C. Titanium. 2nd edn. (Berlin: Springer, 2007).
[2] Leyens, C. & Peters, M. Titanium and Titanium Alloys. (Weinheim: Wiley-VCH, 2003). doi: 10.1201/9781420037678-10
[3] Boyer, R, Welsch, G. & Collings, E. W. Materials Properties Handbook: Titanium Alloys. (Materials Park: ASM International, 1994). doi: 10.1007/978-3-642-56486-4_6
[4] ASTM F2924-14. Standard specification for additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion. ASTM International, West Conshohocken, PA, USA 2014. doi: 10.1520/f2924
[5] AMS4998E. Aerospace Material Specification, Titanium Alloy Powder 6Al-4V. SAE International, Warrendale, PA, USA, 2017,
[6] Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561-586 (1934). doi: 10.1016/S0031-8914(34)80244-3
[7] Ramachandra, C. & Singh, V. Precipitation of the ordered Ti3Al phase in alloy Ti-6.3Al-2Zr-3.3Mo-O.3OSi. Scripta Metallurgica 20, 509-512 (1986). doi: 10.1016/0036-9748(86)90244-9
[8] Radecka, A. et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V. Acta Materialia 112, 141-149 (2016). doi: 10.1016/j.actamat.2016.03.080
[9] Fitzner, A. et al. The effect of aluminium on twinning in binary alpha-titanium. Acta Materialia 103, 341-351 (2016). doi: 10.1016/j.actamat.2015.09.048
[10] Williams, J. C., Thompson, A. W. & Baggerly, R. G. Accurate description of slip character. Scripta Metallurgica 8, 625-630 (1974). doi: 10.1016/0036-9748(74)90009-X
[11] Williams, J. C., Sommer, A. W. & Tung, P. P. The influence of oxygen concentration on the internal stress and dislocation arrangements in α titanium. Metallurgical and Materials Transactions B 3, 2979-2984 (1972). doi: 10.1007/BF02652870
[12] Cao, S. et al. Effects of microtexture and Ti3Al (α2) precipitates on stress-corrosion cracking properties of a Ti-8Al-1Mo-1V alloy. Corrosion Science 116, 22-33 (2017). doi: 10.1016/j.corsci.2016.12.012
[13] Kenel, C. et al. In situ investigation of phase transformations in Ti-6Al-4V under additive manufacturing conditions combining laser melting and high-speed micro-X-ray diffraction. Scientific Reports 7, 16358 (2017). doi: 10.1038/s41598-017-16760-0
[14] Neelakantan, S. et al. Prediction of the martensite start temperature for β titanium alloys as a function of composition. Scripta Materialia 60, 611-614 (2009). doi: 10.1016/j.scriptamat.2008.12.034
[15] Ahmed, T. & Rack, H. J. Phase transformations during cooling in α+β titanium alloys. Materials Science and Engineering: A 243, 206-211 (1998). doi: 10.1016/S0921-5093(97)00802-2
[16] Vilaro, T., Colin, C. & Bartout, J. D. As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting. Metallurgical and Materials Transactions A 42, 3190-3199 (2011). doi: 10.1007/s11661-011-0731-y
[17] Banerjee, D. & Williams, J. C. Perspectives on titanium science and technology. Acta Materialia 61, 844-879 (2013). doi: 10.1016/j.actamat.2012.10.043
[18] Edwards, P. & Ramulu, M. Fatigue performance evaluation of selective laser melted Ti–6Al–4V. Materials Science and Engineering: A 598, 327-337 (2014). doi: 10.1016/j.msea.2014.01.041
[19] Jia, Q. B. et al. Towards a high strength aluminium alloy development methodology for selective laser melting. Materials & Design 174, 107775 (2019). doi: 10.1016/j.matdes.2019.107775
[20] Brandt, M. The role of lasers in additive manufacturing. in Laser Additive Manufacturing: Materials, Design, Technologies, and Applications (ed Brandt, M.) (Amsterdam: Elsevier, 2017). doi: 10.1016/b978-0-08-100433-3.02001-7
[21] Kruth, J. P. et al. Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping Journal 11, 26-36 (2005). doi: 10.1108/13552540510573365
[22] Sing, S. L. & Yeong, W. Y. Laser powder bed fusion for metal additive manufacturing: perspectives on recent developments. Virtual and Physical Prototyping 15, 359-370 (2020). doi: 10.1080/17452759.2020.1779999
[23] Strondl, A. et al. Characterization and control of powder properties for additive manufacturing. JOM 67, 549-554 (2015). doi: 10.1007/s11837-015-1304-0
[24] Shipley, H. et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review. International Journal of Machine Tools and Manufacture 128, 1-20 (2018). doi: 10.1016/j.ijmachtools.2018.01.003
[25] Gong, H. J. et al. Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Additive Manufacturing 1-4, 87-98 (2014). doi: 10.1016/j.addma.2014.08.002
[26] King, W. E. et al. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Applied Physics Reviews 2, 41304 (2015). doi: 10.1063/1.4937809
[27] Zhang, L. C. et al. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia 65, 21-24 (2011). doi: 10.1016/j.scriptamat.2011.03.024
[28] Promoppatum, P., Onler, R. & Yao, S. C. Numerical and experimental investigations of micro and macro characteristics of direct metal laser sintered Ti-6Al-4V products. Journal of Materials Processing Technology 240, 262-273 (2017). doi: 10.1016/j.jmatprotec.2016.10.005
[29] He, Y. N. et al. Melt pool geometry and microstructure of Ti6Al4V with B additions processed by selective laser melting additive manufacturing. Materials & Design 183, 108126 (2019). doi: 10.1016/j.matdes.2019.108126
[30] Bertoli, U. S. et al. On the limitations of volumetric energy density as a design parameter for selective laser melting. Materials & Design 113, 331-340 (2017). doi: 10.1016/j.matdes.2016.10.037
[31] Cao, S. et al. Defect, microstructure, and mechanical property of Ti-6Al-4V alloy fabricated by high-power selective laser melting. JOM 69, 2684-2692 (2017). doi: 10.1007/s11837-017-2581-6
[32] Attar, H. et al. Comparative study of commercially pure titanium produced by laser engineered net shaping, selective laser melting and casting processes. Materials Science and Engineering: A 705, 385-393 (2017). doi: 10.1016/j.msea.2017.08.103
[33] Cunningham, R. et al. Synchrotron-Based X-ray microtomography characterization of the effect of processing variables on porosity formation in laser power-bed additive manufacturing of Ti-6Al-4V. JOM 69, 479-484 (2017). doi: 10.1007/s11837-016-2234-1
[34] Chen, G. et al. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology 333, 38-46 (2018). doi: 10.1016/j.powtec.2018.04.013
[35] Singla, A. K. et al. Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments. Journal of Manufacturing Processes 64, 161-187 (2021). doi: 10.1016/j.jmapro.2021.01.009
[36] Kasperovich, G. et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials & Design 105, 160-170 (2016). doi: 10.1016/j.matdes.2016.05.070
[37] DebRoy, T. et al. Additive manufacturing of metallic components–Process, structure and properties. Progress in Materials Science 92, 112-224 (2018). doi: 10.1016/j.pmatsci.2017.10.001
[38] Thijs, L. et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V. Acta Materialia 58, 3303-3312 (2010). doi: 10.1016/j.actamat.2010.02.004
[39] Qian, L. et al. Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4V samples. Materials Science and Technology 21, 597-605 (2005). doi: 10.1179/174328405X21003
[40] Pantawane, M. V. et al. Rapid thermokinetics driven nanoscale vanadium clustering within martensite laths in laser powder bed fused additively manufactured Ti6Al4V. Materials Research Letters 8, 383-389 (2020). doi: 10.1080/21663831.2020.1772396
[41] Bertoli, U. S. et al. In-situ characterization of laser-powder interaction and cooling rates through high-speed imaging of powder bed fusion additive manufacturing. Materials & Design 135, 385-396 (2017). doi: 10.1016/j.matdes.2017.09.044
[42] Li, Y. L. & Gu, D. D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Materials & Design 63, 856-867 (2014). doi: 10.1016/j.matdes.2014.07.006
[43] Wang, J. C. et al. Selective laser melting of Ti–35Nb composite from elemental powder mixture: microstructure, mechanical behavior and corrosion behavior. Materials Science and Engineering: A 760, 214-224 (2019). doi: 10.1016/j.msea.2019.06.001
[44] Wang, J. C. et al. Microstructural homogeneity and mechanical behavior of a selective laser melted Ti-35Nb alloy produced from an elemental powder mixture. Journal of Materials Science & Technology 61, 221-233 (2021). doi: 10.1016/j.jmst.2020.05.052
[45] Hocine, S. et al. Operando X-ray diffraction during laser 3D printing. Materials Today 34, 30-40 (2020). doi: 10.1016/j.mattod.2019.10.001
[46] Ganeriwala, R. K. et al. Evaluation of a thermomechanical model for prediction of residual stress during laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing 27, 489-502 (2019). doi: 10.1016/j.addma.2019.03.034
[47] Yu, W. H. et al. Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: a state of the art review. Progress in Materials Science 104, 330-379 (2019). doi: 10.1016/j.pmatsci.2019.04.006
[48] Song, J. et al. Role of scanning strategy on residual stress distribution in Ti-6Al-4V alloy prepared by selective laser melting. Optik 170, 342-352 (2018). doi: 10.1016/j.ijleo.2018.05.128
[49] Mercelis, P. & Kruth, J. P. Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyping Journal 12, 254-265 (2006). doi: 10.1108/13552540610707013
[50] Levkulich, N. C. et al. The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Additive Manufacturing 28, 475-484 (2019). doi: 10.1016/j.addma.2019.05.015
[51] Ahmad, B. et al. Residual stress evaluation in selective-laser-melting additively manufactured titanium (Ti-6Al-4V) and inconel 718 using the contour method and numerical simulation. Additive Manufacturing 22, 571-582 (2018). doi: 10.1016/j.addma.2018.06.002
[52] Ali, H., Ghadbeigi, H. & Mumtaz, K. Effect of scanning strategies on residual stress and mechanical properties of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A 712, 175-187 (2018). doi: 10.1016/j.msea.2017.11.103
[53] Vandenbroucke, B. & Kruth, J. P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping Journal 13, 196-203 (2007). doi: 10.1108/13552540710776142
[54] Shi, X. Z. et al. Effect of high layer thickness on surface quality and defect behavior of Ti-6Al-4V fabricated by selective laser melting. Optics & Laser Technology 132, 106471 (2020). doi: 10.1016/j.optlastec.2020.106471
[55] Brika, S. E. et al. Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Additive Manufacturing 31, 100929 (2020). doi: 10.1016/j.addma.2019.100929
[56] Chen, Z. E. et al. Surface roughness of Selective Laser Melted Ti-6Al-4V alloy components. Additive Manufacturing 21, 91-103 (2018). doi: 10.1016/j.addma.2018.02.009
[57] Bagehorn, S., Wehr, J. & Maier, H. J. Application of mechanical surface finishing processes for roughness reduction and fatigue improvement of additively manufactured Ti-6Al-4V parts. International Journal of Fatigue 102, 135-142 (2017). doi: 10.1016/j.ijfatigue.2017.05.008
[58] Chen, Z. E. et al. Surface roughness and fatigue properties of selective laser melted Ti-6Al-4V alloy. in Additive Manufacturing for the Aerospace Industry (eds Froes, F. & Boyer, R.) (Amsterdam: Elsevier, 2019), 283-299. doi: 10.1016/b978-0-12-814062-8.00015-7
[59] Vaidya, R. & Anand, S. Optimum support structure generation for additive manufacturing using unit cell structures and support removal constraint. Procedia Manufacturing 5, 1043-1059 (2016). doi: 10.1016/j.promfg.2016.08.072
[60] Benedetti, M. et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials 71, 295-306 (2017). doi: 10.1016/j.jmbbm.2017.03.024
[61] Kumar, P. & Ramamurty, U. High cycle fatigue in selective laser melted Ti-6Al-4V. Acta Materialia 194, 305-320 (2020). doi: 10.1016/j.actamat.2020.05.041
[62] Simonelli, M., Tse, Y. Y. & Tuck, C. On the texture formation of selective laser melted Ti-6Al-4V. Metallurgical and Materials Transactions A 45, 2863-2872 (2014). doi: 10.1007/s11661-014-2218-0
[63] Simonelli, M., Tse, Y. Y. & Tuck, C. Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti-6Al-4V. Materials Science and Engineering: A 616, 1-11 (2014). doi: 10.1016/j.msea.2014.07.086
[64] Xu, W. et al. Additive manufacturing of strong and ductile Ti-6Al-4V by selective laser melting via in situ martensite decomposition. Acta Materialia 85, 74-84 (2015). doi: 10.1016/j.actamat.2014.11.028
[65] Sallica-Leva, E. et al. Ductility improvement due to martensite α′ decomposition in porous Ti–6Al–4V parts produced by selective laser melting for orthopedic implants. Journal of the Mechanical Behavior of Biomedical Materials 54, 149-158 (2016). doi: 10.1016/j.jmbbm.2015.09.020
[66] Murr, L. E. et al. Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials 2, 20-32 (2009). doi: 10.1016/j.jmbbm.2008.05.004
[67] Wu, X. H. et al. Microstructures of laser-deposited Ti-6Al-4V. Materials & Design 25, 137-144 (2004). doi: 10.1016/j.matdes.2003.09.009
[68] Yin, J. et al. Microstructure and mechanical property of selective laser melted Ti6Al4V dependence on laser energy density. Rapid Prototyping Journal 23, 217-226 (2017). doi: 10.1108/RPJ-12-2015-0193
[69] Voisin, T. et al. Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Materials & Design 158, 113-126 (2018). doi: 10.1016/j.matdes.2018.08.004
[70] Zhang, D. C. et al. Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization. Acta Materialia 189, 93-104 (2020). doi: 10.1016/j.actamat.2020.03.003
[71] Barriobero-Vila, P. et al. Inducing stable α + β microstructures during selective laser melting of Ti-6Al-4V using intensified intrinsic heat treatments. Materials 10, 268 (2017). doi: 10.3390/ma10030268
[72] Yang, J. J. et al. Formation and control of martensite in Ti-6Al-4V alloy produced by selective laser melting. Materials & Design 108, 308-318 (2016). doi: 10.1016/j.matdes.2016.06.117
[73] Haubrich, J. et al. The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Materialia 167, 136-148 (2019). doi: 10.1016/j.actamat.2019.01.039
[74] Simonelli, M., Tse, Y. Y. & Tuck, C. Microstructure of Ti-6Al-4V produced by selective laser melting. Journal of Physics: Conference Series 371, 012084 (2012). doi: 10.1088/1742-6596/371/1/012084
[75] Kumar, M. A. et al. Role of microstructure on twin nucleation and growth in HCP titanium: a statistical study. Acta Materialia 148, 123-132 (2018). doi: 10.1016/j.actamat.2018.01.041
[76] Cao, S. et al. Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V. Journal of Alloys and Compounds 744, 357-363 (2018). doi: 10.1016/j.jallcom.2018.02.111
[77] Xie, Z. Y. et al. Effects of selective laser melting build orientations on the microstructure and tensile performance of Ti–6Al–4V alloy. Materials Science and Engineering: A 776, 139001 (2020). doi: 10.1016/j.msea.2020.139001
[78] Kazantseva, N. et al. Martensitic transformations in Ti-6Al-4V (ELI) alloy manufactured by 3D Printing. Materials Characterization 146, 101-112 (2018). doi: 10.1016/j.matchar.2018.09.042
[79] Krakhmalev, P. et al. Deformation behavior and microstructure of Ti6Al4V manufactured by SLM. Physics Procedia 83, 778-788 (2016). doi: 10.1016/j.phpro.2016.08.080
[80] Matsumoto, H. et al. Room-temperature ductility of Ti-6Al-4V alloy with α’ martensite microstructure. Materials Science and Engineering: A 528, 1512-1520 (2011). doi: 10.1016/j.msea.2010.10.070
[81] Cao, S. et al. On the role of cooling rate and temperature in forming twinned α’ martensite in Ti–6Al–4V. Journal of Alloys and Compounds 813, 152247 (2020). doi: 10.1016/j.jallcom.2019.152247
[82] Yang, J. J. et al. Role of molten pool mode on formability, microstructure and mechanical properties of selective laser melted Ti-6Al-4V alloy. Materials & Design 110, 558-570 (2016). doi: 10.1016/j.matdes.2016.08.036
[83] Facchini, L. et al. Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders. Rapid Prototyping Journal 16, 450-459 (2010). doi: 10.1108/13552541011083371
[84] Vrancken, B. et al. Heat treatment of Ti6Al4V produced by Selective Laser Melting: microstructure and mechanical properties. Journal of Alloys and Compounds 541, 177-185 (2012). doi: 10.1016/j.jallcom.2012.07.022
[85] Kruth, J. P. et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proceedings of the Institution of Mechanical Engineers,Part B: Journal of Engineering Manufacture 226, 980-991 (2012). doi: 10.1177/0954405412437085
[86] Ali, H. et al. In-situ residual stress reduction, martensitic decomposition and mechanical properties enhancement through high temperature powder bed pre-heating of Selective Laser Melted Ti6Al4V. Materials Science and Engineering: A 695, 211-220 (2017). doi: 10.1016/j.msea.2017.04.033
[87] Kaschel, F. R. et al. Mechanism of stress relaxation and phase transformation in additively manufactured Ti-6Al-4V via in situ high temperature XRD and TEM analyses. Acta Materialia 188, 720-732 (2020). doi: 10.1016/j.actamat.2020.02.056
[88] Papadakis, L., Chantzis, D. & Salonitis, K. On the energy efficiency of pre-heating methods in SLM/SLS processes. The International Journal of Advanced Manufacturing Technology 95, 1325-1338 (2018). doi: 10.1007/s00170-017-1287-9
[89] Malý, M. et al. Effect of process parameters and high-temperature preheating on residual stress and relative density of Ti6Al4V processed by selective laser melting. Materials 12, 930 (2019). doi: 10.3390/ma12060930
[90] Yan, M. et al. A transmission electron microscopy and three-dimensional atom probe study of the oxygen-induced fine microstructural features in as-sintered Ti–6Al–4V and their impacts on ductility. Acta Materialia 68, 196-206 (2014). doi: 10.1016/j.actamat.2014.01.015
[91] Alamos, F. J. et al. Effect of powder reuse on mechanical properties of Ti-6Al-4V produced through selective laser melting. International Journal of Refractory Metals and Hard Materials 91, 105273 (2020). doi: 10.1016/j.ijrmhm.2020.105273
[92] Xu, Y. L. et al. Microstructural tailoring of as-selective laser melted Ti6Al4V alloy for high mechanical properties. Journal of Alloys and Compounds 816, 152536 (2020). doi: 10.1016/j.jallcom.2019.152536
[93] Dahotre, N. B. & Harimkar, S. P. Laser Fabrication and Machining of Materials. (New York: Springer Science, 2008) doi: 10.1007/978-0-387-72344-0
[94] Xu, W. et al. Ti-6Al-4V additively manufactured by selective laser melting with superior mechanical properties. JOM 67, 668-673 (2015). doi: 10.1007/s11837-015-1297-8
[95] Lui, E. W. et al. New development in selective laser melting of Ti–6Al–4V: a wider processing window for the achievement of fully lamellar α + β microstructures. JOM 69, 2679-2683 (2017). doi: 10.1007/s11837-017-2599-9
[96] Xu, W. et al. In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Materialia 125, 390-400 (2017). doi: 10.1016/j.actamat.2016.12.027
[97] Beese, A. M. & Carroll, B. E. Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock. JOM 68, 724-734 (2016). doi: 10.1007/s11837-015-1759-z
[98] Baker, A. H., Collins, P. C. & Williams, J. C. New nomenclatures for heat treatments of additively manufactured titanium alloys. JOM 69, 1221-1227 (2017). doi: 10.1007/s11837-017-2358-y
[99] Wu, S. Q. et al. Microstructural evolution and microhardness of a selective-laser-melted Ti-6Al-4V alloy after post heat treatments. Journal of Alloys and Compounds 672, 643-652 (2016). doi: 10.1016/j.jallcom.2016.02.183
[100] Motyka, M. et al. Decomposition of deformed α′(α″) martensitic phase in Ti–6Al–4V alloy. Materials Science and Technology 35, 260-272 (2019). doi: 10.1080/02670836.2018.1466418
[101] Cao, S. et al. Static coarsening behaviour of lamellar microstructure in selective laser melted Ti–6Al–4V. Journal of Materials Science & Technology 35, 1578-1586 (2019). doi: 10.1016/j.jmst.2019.04.008
[102] Kusano, M. et al. Tensile properties prediction by multiple linear regression analysis for selective laser melted and post heat-treated Ti-6Al-4V with microstructural quantification. Materials Science and Engineering: A 787, 139549 (2020). doi: 10.1016/j.msea.2020.139549
[103] Kasperovich, G. & Hausmann, J. Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting. Journal of Materials Processing Technology 220, 202-214 (2015). doi: 10.1016/j.jmatprotec.2015.01.025
[104] Ter Haar, G. M. & Becker, T. H. Selective laser melting produced Ti-6Al-4V: post-process heat treatments to achieve superior tensile properties. Materials 11, 146 (2018). doi: 10.3390/ma11010146
[105] Miyazaki, S. et al. Image segmentation and analysis for microstructure and property evaluations on Ti–6Al–4V fabricated by selective laser melting. Materials Transactions 60, 561-568 (2019). doi: 10.2320/matertrans.MBW201806
[106] De Formanoir, C. et al. Micromechanical behavior and thermal stability of a dual-phase α+α’ titanium alloy produced by additive manufacturing. Acta Materialia 162, 149-162 (2019). doi: 10.1016/j.actamat.2018.09.050
[107] Zhao, Z. et al. Achieving superior ductility for laser solid formed extra low interstitial Ti-6Al-4V titanium alloy through equiaxial alpha microstructure. Scripta Materialia 146, 187-191 (2018). doi: 10.1016/j.scriptamat.2017.11.021
[108] Wang, J. et al. Effects of subtransus heat treatments on microstructure features and mechanical properties of wire and arc additive manufactured Ti–6Al–4V alloy. Materials Science and Engineering: A 776, 139020 (2020). doi: 10.1016/j.msea.2020.139020
[109] Stefansson, N. & Semiatin, S. L. Mechanisms of globularization of Ti-6Al-4V during static heat treatment. Metallurgical and Materials Transactions A 34, 691-698 (2003). doi: 10.1007/s11661-003-0103-3
[110] Sabban, R. et al. Globularization using heat treatment in additively manufactured Ti-6Al-4V for high strength and toughness. Acta Materialia 162, 239-254 (2019). doi: 10.1016/j.actamat.2018.09.064
[111] Du Plessis, A. & Macdonald, E. Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure. Additive Manufacturing 34, 101191 (2020). doi: 10.1016/j.addma.2020.101191
[112] Leuders, S. et al. On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue 48, 300-307 (2013). doi: 10.1016/j.ijfatigue.2012.11.011
[113] Qiu, C. L., Adkins, N. J. E. & Attallah, M. M. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V. Materials Science and Engineering: A 578, 230-239 (2013). doi: 10.1016/j.msea.2013.04.099
[114] Cunningham, R. et al. Analyzing the effects of powder and post-processing on porosity and properties of electron beam melted Ti-6Al-4V. Materials Research Letters 5, 516-525 (2017). doi: 10.1080/21663831.2017.1340911
[115] Tammas-Williams, S. et al. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scripta Materialia 122, 72-76 (2016). doi: 10.1016/j.scriptamat.2016.05.002
[116] Leuders, S. et al. On the fatigue properties of metals manufactured by selective laser melting–The role of ductility. Journal of Materials Research 29, 1911-1919 (2014). doi: 10.1557/jmr.2014.157
[117] Baufeld, B., Van Der Biest, O. & Gault, R. Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties. Materials & Design 31, S106-S111 (2010). doi: 10.1016/j.matdes.2009.11.032
[118] Zhang, L. C. & Attar, H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review . Advanced Engineering Materials 18, 463-475 (2016). doi: 10.1002/adem.201500419
[119] Benedetti, M. et al. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: mean stress and defect sensitivity. International Journal of Fatigue 107, 96-109 (2018). doi: 10.1016/j.ijfatigue.2017.10.021
[120] Yang, Y. et al. Crystallographic features of α variants and β phase for Ti-6Al-4V alloy fabricated by selective laser melting. Materials Science and Engineering: A 707, 548-558 (2017). doi: 10.1016/j.msea.2017.09.068
[121] Frkan, M. et al. Microstructure and fatigue performance of SLM-fabricated Ti6Al4V alloy after different stress-relief heat treatments. Transportation Research Procedia 40, 24-29 (2019). doi: 10.1016/j.trpro.2019.07.005
[122] Zhou, B. et al. A study of the microstructures and mechanical properties of Ti6Al4V fabricated by SLM under vacuum. Materials Science and Engineering: A 724, 1-10 (2018). doi: 10.1016/j.msea.2018.03.021
[123] Jamshidi, P. et al. Selective laser melting of Ti-6Al-4V: the impact of post-processing on the tensile, fatigue and biological properties for medical implant applications. Materials 13, 2813 (2020). doi: 10.3390/ma13122813
[124] Yan, X. C. et al. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. Journal of Alloys and Compounds 764, 1056-1071 (2018). doi: 10.1016/j.jallcom.2018.06.076
[125] Ter Haar, G. M. Selective Laser Melting-produced Ti6Al4V: Influence of annealing strategies on crystallographic microstructure and tensile behaviour. MEng thesis, Stellenbosch University (2017).
[126] Chong, Y. et al. Mechanical properties of fully martensite microstructure in Ti-6Al-4V alloy transformed from refined beta grains obtained by rapid heat treatment (RHT). Scripta Materialia 138, 66-70 (2017). doi: 10.1016/j.scriptamat.2017.05.038
[127] Zafari, A. & Xia, K. High ductility in a fully martensitic microstructure: a paradox in a Ti alloy produced by selective laser melting. Materials Research Letters 6, 627-633 (2018). doi: 10.1080/21663831.2018.1525773
[128] Zafari, A., Barati, M. R. & Xia, K. Controlling martensitic decomposition during selective laser melting to achieve best ductility in high strength Ti-6Al-4V. Materials Science and Engineering: A 744, 445-455 (2019). doi: 10.1016/j.msea.2018.12.047
[129] Carroll, B. E., Palmer, T. A. & Beese, A. M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing. Acta Materialia 87, 309-320 (2015). doi: 10.1016/j.actamat.2014.12.054
[130] Wilson-Heid, A. E. et al. Quantitative relationship between anisotropic strain to failure and grain morphology in additively manufactured Ti-6Al-4V. Materials Science and Engineering: A 706, 287-294 (2017). doi: 10.1016/j.msea.2017.09.017
[131] Wilson-Heid, A. E., Qin, S. P. & Beese, A. M. Anisotropic multiaxial plasticity model for laser powder bed fusion additively manufactured Ti-6Al-4V. Materials Science and Engineering: A 738, 90-97 (2018). doi: 10.1016/j.msea.2018.09.077
[132] Ter Haar G. M. & Becker T. H. The influence of microstructural texture and prior beta grain recrystallisation on the deformation behaviour of laser powder bed fusion produced Ti–6Al–4V. Materials Science and Engineering: A 814, 141185 (2021). doi: 10.1016/j.msea.2021.141185
[133] Li, P. et al. Critical assessment of the fatigue performance of additively manufactured Ti-6Al-4V and perspective for future research. International Journal of Fatigue 85, 130-143 (2016). doi: 10.1016/j.ijfatigue.2015.12.003
[134] Günther, J. et al. On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Materials & Design 143, 1-11 (2018). doi: 10.1016/j.matdes.2018.01.042
[135] Froes, F. H. et al. The technologies of titanium powder metallurgy. JOM 56, 46-48 (2004). doi: 10.1016/b978-0-12-800054-0.00001-0
[136] Soyama, H. & Takeo, F. Effect of various peening methods on the fatigue properties of Titanium alloy Ti6Al4V manufactured by direct metal laser sintering and electron beam melting. Materials 13, 2216 (2020). doi: 10.3390/ma13102216
[137] Hasib, M. T. et al. Fatigue crack growth behavior of laser powder bed fusion additive manufactured Ti-6Al-4V: Roles of post heat treatment and build orientation. International Journal of Fatigue 142, 105955 (2021). doi: 10.1016/j.ijfatigue.2020.105955
[138] Kumar, P. & Ramamurty, U. Microstructural optimization through heat treatment for enhancing the fracture toughness and fatigue crack growth resistance of selective laser melted Ti-6Al-4V alloy. Acta Materialia 169, 45-59 (2019). doi: 10.1016/j.actamat.2019.03.003
[139] Cain, V. et al. Crack propagation and fracture toughness of Ti6Al4V alloy produced by selective laser melting. Additive Manufacturing 5, 68-76 (2015). doi: 10.1016/j.addma.2014.12.006
[140] Kumar, P., Prakash, O. & Ramamurty, U. Micro-and meso-structures and their influence on mechanical properties of selectively laser melted Ti-6Al-4V. Acta Materialia 154, 246-260 (2018). doi: 10.1016/j.actamat.2018.05.044
[141] Viespoli, L. M. et al. Creep and high temperature fatigue performance of as build selective laser melted Ti-based 6Al-4V titanium alloy. Engineering Failure Analysis 111, 104477 (2020). doi: 10.1016/j.engfailanal.2020.104477
[142] Kim, Y. K. et al. Improvement in the high-temperature creep properties via heat treatment of Ti-6Al-4V alloy manufactured by selective laser melting. Materials Science and Engineering: A 715, 33-40 (2018). doi: 10.1016/j.msea.2017.12.085
[143] Barboza, M. J. R. et al. Creep behavior of Ti–6Al–4V and a comparison with titanium matrix composites. Materials Science and Engineering: A 428, 319-326 (2006). doi: 10.1016/j.msea.2006.05.089
[144] Lee, D. G. et al. Effects of microstructural factors on quasi-static and dynamic deformation behaviors of Ti-6Al-4V alloys with widmanstätten structures. Metallurgical and Materials Transactions A 34, 2541 (2003). doi: 10.1007/s11661-003-0013-4
[145] Bertolini, R. et al. Improving surface integrity and corrosion resistance of additive manufactured Ti6Al4V alloy by cryogenic machining. The International Journal of Advanced Manufacturing Technology 104, 2839-2850 (2019). doi: 10.1007/s00170-019-04180-5
[146] Zhang, Y. F. et al. Electrochemical polishing of additively manufactured Ti–6Al–4V alloy. Metals and Materials International 26, 783-792 (2020). doi: 10.1007/s12540-019-00556-0
[147] Yang, J. J. et al. Corrosion behavior of additive manufactured Ti-6Al-4V Alloy in NaCl solution. Metallurgical and Materials Transactions A 48, 3583-3593 (2017). doi: 10.1007/s11661-017-4087-9
[148] Dai, N. W. et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corrosion Science 102, 484-489 (2016). doi: 10.1016/j.corsci.2015.10.041
[149] Wu, B. T. et al. The anisotropic corrosion behaviour of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution. Corrosion Science 137, 176-183 (2018). doi: 10.1016/j.corsci.2018.03.047
[150] Dai, N. W. et al. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corrosion Science 111, 703-710 (2016). doi: 10.1016/j.corsci.2016.06.009
[151] Dai, N. W. et al. Heat treatment degrading the corrosion resistance of selective laser melted Ti-6Al-4V alloy. Journal of The Electrochemical Society 164, C428-C434 (2017). doi: 10.1149/2.1481707jes
[152] Xu, Y. Z. et al. Effect of annealing treatments on the microstructure, mechanical properties and corrosion behavior of direct metal laser sintered Ti-6Al-4V. Journal of Materials Engineering and Performance 26, 2572-2582 (2017). doi: 10.1007/s11665-017-2710-y