[1] Barron, L. D. True and false chirality and parity violation. Chem. Phys. Lett. 123, 423–427 (1986). doi: 10.1016/0009-2614(86)80035-5
[2] Caloz, C. & Sihvola, A. Electromagnetic chirality, Part 2: the macroscopic perspective [electromagnetic perspectives]. IEEE Antennas Propag. Mag. 62, 82–98 (2020). http://ieeexplore.ieee.org/document/9051770
[3] Ma, X. L. et al. Meta-chirality: fundamentals, construction and applications. Nanomaterials 7, 116 (2017). doi: 10.3390/nano7050116
[4] Hentschel, M. et al. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).
[5] Kuzyk, A. et al. DNA origami route for nanophotonics. ACS Photonics 5, 1151–1163 (2018). doi: 10.1021/acsphotonics.7b01580
[6] Liu, N. & Liedl, T. DNA-assembled advanced plasmonic architectures. Chem. Rev. 118, 3032–3053 (2018). doi: 10.1021/acs.chemrev.7b00225
[7] Sharma, V. et al. Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–451 (2009). doi: 10.1126/science.1172051
[8] Cecconello, A. et al. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2, 17039 (2017). doi: 10.1038/natrevmats.2017.39
[9] Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017). doi: 10.1021/acs.chemrev.6b00755
[10] Kong, X. T. et al. Plasmonic chirality and circular dichroism in bioassembled and nonbiological systems: theoretical background and recent progress. Adv. Mater. https://doi.org/10.1002/adma.201801790 (2018).
[11] Qiu, M. et al. 3D metaphotonic nanostructures with intrinsic chirality. Adv. Funct. Mater. 28, 1803147 (2018). doi: 10.1002/adfm.201803147
[12] Collins, J. T. et al. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Optical Mater. 5, 1700182 (2017). doi: 10.1002/adom.201700182
[13] Lindell, I. V. et al. Electromagnetic Waves in Chiral and Bi-Isotropic Media (Artech House, Boston, 1994).
[14] Gao, W. L. et al. Topological photonic phase in chiral hyperbolic metamaterials. Phys. Rev. Lett. 114, 037402 (2015). doi: 10.1103/PhysRevLett.114.037402
[15] Pendry, J. B. A chiral route to negative refraction. Science 306, 1353–1355 (2004). doi: 10.1126/science.1104467
[16] Fan, Z. Y. & Govorov, A. O. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett. 12, 3283–3289 (2012). doi: 10.1021/nl3013715
[17] Yan, W. J. et al. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134, 15114–15121 (2012). doi: 10.1021/ja3066336
[18] Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483, 311–314 (2012). doi: 10.1038/nature10889
[19] Ma, W. et al. Chiral plasmonics of self-Assembled nanorod dimers. Sci. Rep. 3, 1934 (2013). doi: 10.1038/srep01934
[20] Canaguier-Durand, A. & Genet, C. Chiral route to pulling optical forces and left-handed optical torques. Phys. Rev. A 92, 043823 (2015). doi: 10.1103/PhysRevA.92.043823
[21] Canaguier-Durand, A. et al. Mechanical separation of chiral dipoles by chiral light. N. J. Phys. 15, 123037 (2013). doi: 10.1088/1367-2630/15/12/123037
[22] Tang, Y. Q. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010). doi: 10.1103/PhysRevLett.104.163901
[23] Govorov, A. O. et al. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374–1382 (2010). doi: 10.1021/nl100010v
[24] Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. Application to various geometries. J. Phys. Chem. C 115, 7914–7923 (2011). doi: 10.1021/jp1121432
[25] Zhang, H. & Govorov, A. O. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 87, 075410 (2013). doi: 10.1103/PhysRevB.87.075410
[26] Bernal Arango, F. & Femius Koenderink, A. Polarizability tensor retrieval for magnetic and plasmonic antenna design. N. J. Phys. 15, 073023 (2013). doi: 10.1088/1367-2630/15/7/073023
[27] Bernal Arango, F., Coenen, T. & Femius Koenderink, A. Underpinning hybridization intuition for complex nanoantennas by magnetoelectric quadrupolar polarizability retrieval. ACS Photonics 1, 444–453 (2014). doi: 10.1021/ph5000133
[28] Caloz, C. & Sihvola, A. Electromagnetic chirality, Part 1: the microscopic perspective [electromagnetic perspectives]. IEEE Antennas Propag. Mag. 62, 58–71 (2020). http://ieeexplore.ieee.org/document/9051770
[29] Schäferling, M. Chiral Nanophotonics: Chiral Optical Properties of Plasmonic Systems (Springer, Cham, 2017).
[30] Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl. 7, 17158 (2018). doi: 10.1038/lsa.2017.158
[31] Hu, L. et al. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes. Sci. Rep. 7, 11151 (2017). doi: 10.1038/s41598-017-11571-9
[32] Plum, E., Fedotov, V. A. & Zheludev, N. I. Optical activity in extrinsically chiral metamaterial. Appl. Phys. Lett. 93, 191911 (2008). doi: 10.1063/1.3021082
[33] Sersic, I. et al. Ubiquity of optical activity in planar metamaterial scatterers. Phys. Rev. Lett. 108, 223903 (2012). doi: 10.1103/PhysRevLett.108.223903
[34] Kerker, M., Wang, D. S. & Giles, C. L. Electromagnetic scattering by magnetic spheres. J. Opt. Soc. Am. 73, 765–767 (1983). doi: 10.1364/JOSA.73.000765
[35] Liu, W. & Kivshar, Y. S. Multipolar interference effects in nanophotonics. Philos. Trans. R. Soc. A 375, 20160317 (2017). doi: 10.1098/rsta.2016.0317
[36] Poutrina, E. & Urbas, A. Multipole analysis of unidirectional light scattering from plasmonic dimers. J. Opt. 16, 114005 (2014). doi: 10.1088/2040-8978/16/11/114005
[37] Fruhnert, M. et al. Computing the T-matrix of a scattering object with multiple plane wave illuminations. Beilstein J. Nanotechnol. 8, 614–626 (2017). doi: 10.3762/bjnano.8.66
[38] Evlyukhin, A. B. et al. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012). doi: 10.1021/nl301594s
[39] Girard, C. & Dereux, A. Near-field optics theories. Rep. Prog. Phys. 59, 657–699 (1996). doi: 10.1088/0034-4885/59/5/002
[40] Chaumet, P. C. et al. Evanescent light scattering: the validity of the dipole approximation. Phys. Rev. B 58, 2310–2315 (1998). http://adsabs.harvard.edu/abs/1998PhRvB..58.2310C
[41] Mishchenko, M. I., Travis, L. D. & Mackowski, D. W. T-matrix computations of light scattering by nonspherical particles: a review. J. Quant. Spectrosc. Radiat. Transf. 55, 535–575 (1996). doi: 10.1016/0022-4073(96)00002-7
[42] Fan, Z. Y. & Govorov, A. O. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10, 2580–2587 (2010). doi: 10.1021/nl101231b
[43] Fan, Z. Y., Zhang, H. & Govorov, A. O. Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects. J. Phys. Chem. C. 117, 14770–14777 (2013). doi: 10.1021/jp404987v
[44] Karst, J. et al. Single plasmonic oligomer chiral spectroscopy. Adv. Optical Mater. 6, 1800087 (2018). doi: 10.1002/adom.201800087
[45] Karst, J. et al. Chiral scatterometry on chemically synthesized single plasmonic nanoparticles. ACS Nano 13, 8659–8668 (2019). doi: 10.1021/acsnano.9b04046
[46] Alaee, R., Rockstuhl, C. & Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics. Adv. Optical Mater. 7, 1800783 (2019). doi: 10.1002/adom.201800783
[47] Mun, J. et al. Describing meta-atoms using the exact higher-order polarizability tensors. ACS Photonics 7, 1153–1162 (2020). doi: 10.1021/acsphotonics.9b01776
[48] Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Objects of maximum electromagnetic chirality. Phys. Rev. X 6, 031013 (2016). http://arxiv.org/abs/1508.04049v3
[49] Fernandez-Corbaton, I., Fruhnert, M. & Rockstuhl, C. Dual and chiral objects for optical activity in general scattering directions. ACS Photonics 2, 376–384 (2015). doi: 10.1021/ph500419a
[50] Fernandez-Corbaton, I. et al. Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell'S equations. Phys. Rev. Lett. 111, 060401 (2013). doi: 10.1103/PhysRevLett.111.060401
[51] Prodan, E. et al. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003). doi: 10.1126/science.1089171
[52] Duan, X. Y., Yue, S. & Liu, N. Understanding complex chiral plasmonics. Nanoscale 7, 17237–17243 (2015). doi: 10.1039/C5NR04050G
[53] Yin, X. H. et al. Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model. Nano Lett. 13, 6238–6243 (2013). doi: 10.1021/nl403705k
[54] Hentschel, M., Ferry, V. E. & Alivisatos, A. P. Optical rotation reversal in the optical response of chiral plasmonic nanosystems: the role of plasmon hybridization. ACS Photonics 2, 1253–1259 (2015). doi: 10.1021/acsphotonics.5b00354
[55] Lieberman, I. et al. Plasmon-resonance-enhanced absorption and circular dichroism. Angew. Chem. Int. Ed. 47, 4855–4857 (2008). doi: 10.1002/anie.200800231
[56] Maoz, B. M. et al. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett. 13, 1203–1209 (2013). doi: 10.1021/nl304638a
[57] Abdulrahman, N. A. et al. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Lett. 12, 977–983 (2012). doi: 10.1021/nl204055r
[58] Lu, F. et al. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett. 13, 3145–3151 (2013). doi: 10.1021/nl401107g
[59] Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013). doi: 10.1038/ncomms3689
[60] Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783–787 (2010). doi: 10.1038/nnano.2010.209
[61] Zhao, Y. et al. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett. 14, 3908–3913 (2014). doi: 10.1021/nl501166m
[62] Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8, 14180 (2017). doi: 10.1038/ncomms14180
[63] Tullius, R. et al. "Superchiral" spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc. 137, 8380–8383 (2015). doi: 10.1021/jacs.5b04806
[64] Yoo, S. & Park, Q. H. Metamaterials and chiral sensing: a review of fundamentals and applications. Nanophotonics 8, 249–261 (2019). doi: 10.1515/nanoph-2018-0167
[65] Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn. (Cambridge University Press, Cambridge, 2012).
[66] Barron, L. D. Molecular Light Scattering and Optical Activity 2nd edn. (Cambridge University Press, Cambridge, 2009).
[67] Wu, T., Wang, R. Y. & Zhang, X. D. Plasmon-induced strong interaction between chiral molecules and orbital angular momentum of light. Sci. Rep. 5, 18003 (2015). doi: 10.1038/srep18003
[68] Cameron, R. P. et al. Discriminatory optical force for chiral molecules. N. J. Phys. 16, 013020 (2014). doi: 10.1088/1367-2630/16/1/013020
[69] Yang, N. & Cohen, A. E. Local geometry of electromagnetic fields and its role in molecular multipole transitions. J. Phys. Chem. B 115, 5304–5311 (2011). doi: 10.1021/jp1092898
[70] Wu, T. et al. A giant chiroptical effect caused by the electric quadrupole. Nanoscale 9, 5110–5118 (2017). doi: 10.1039/C6NR09419H
[71] Mun, J. & Rho, J. Importance of higher-order multipole transitions on chiral nearfield interactions. Nanophotonics 8, 941–948 (2019). doi: 10.1515/nanoph-2019-0046
[72] Nesterov, M. L. et al. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics 3, 578–583 (2016). doi: 10.1021/acsphotonics.5b00637
[73] Lee, S., Yoo, S. & Park, Q. H. Microscopic origin of surface-enhanced circular dichroism. ACS Photonics 4, 2047–2052 (2017). doi: 10.1021/acsphotonics.7b00479
[74] Mun, J. & Rho, J. Surface-enhanced circular dichroism by multipolar radiative coupling. Opt. Lett. 43, 2856–2859 (2018). doi: 10.1364/OL.43.002856
[75] Besteiro, L. V. et al. Aluminum nanoparticles with hot spots for plasmon-induced circular dichroism of chiral molecules in the UV spectral interval. Adv. Opt. Mater. 5, 1700069 (2017). doi: 10.1002/adom.201700069
[76] Vázquez-Guardado, A. & Chanda, D. Superchiral light generation on degenerate achiral surfaces. Phys. Rev. Lett. 120, 137601 (2018). doi: 10.1103/PhysRevLett.120.137601
[77] Lipkin, D. M. Existence of a new conservation law in electromagnetic theory. J. Math. Phys. 5, 696–700 (1964). doi: 10.1063/1.1704165
[78] Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011). doi: 10.1103/PhysRevA.83.021803
[79] Coles, M. M. & Andrews, D. L. Chirality and angular momentum in optical radiation. Phys. Rev. 85, 063810 (2012). doi: 10.1103/PhysRevA.85.063810
[80] Poulikakos, L. V. et al. Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 3, 1619–1625 (2016). doi: 10.1021/acsphotonics.6b00201
[81] Poulikakos, L. V. et al. Chiral light design and detection inspired by optical antenna theory. Nano Lett. 18, 4633–4640 (2018). doi: 10.1021/acs.nanolett.8b00083
[82] Vázquez-Lozano, J. E. & Martínez, A. Optical chirality in dispersive and lossy media. Phys. Rev. Lett. 121, 043901 (2018). doi: 10.1103/PhysRevLett.121.043901
[83] Nieto-Vesperinas, M. Optical theorem for the conservation of electromagnetic helicity: significance for molecular energy transfer and enantiomeric discrimination by circular dichroism. Phys. Rev. A 92, 023813 (2015). doi: 10.1103/PhysRevA.92.023813
[84] Nieto-Vesperinas, M. Chiral optical fields: a unified formulation of helicity scattered from particles and dichroism enhancement. Philos. Trans. R. Soc. A 375, 20160314 (2017). doi: 10.1098/rsta.2016.0314
[85] Gutsche, P. & Nieto-Vesperinas, M. Optical chirality of time-harmonic wavefields for classification of scatterers. Sci. Rep. 8, 9416 (2018). doi: 10.1038/s41598-018-27496-w
[86] Schäferling, M. et al. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012). doi: 10.1103/physrevx.2.031010
[87] Schäferling, M. et al. Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics 1, 530–537 (2014). http://www.researchgate.net/publication/263944673_Helical_Plasmonic_Nanostructures_as_Prototypical_Chiral_Near-Field_Sources
[88] Schäferling, M. et al. Reducing the complexity: enantioselective chiral near-fields by diagonal slit and mirror configuration. ACS Photonics 3, 1076–1084 (2016). doi: 10.1021/acsphotonics.6b00147
[89] Hendry, E. et al. Chiral electromagnetic fields generated by arrays of nanoslits. Nano Lett. 12, 3640–3644 (2012). doi: 10.1021/nl3012787
[90] Garciá-Guirado, J. et al. Enantiomer-selective molecular sensing using racemic nanoplasmonic arrays. Nano Lett. 18, 6279–6285 (2018). doi: 10.1021/acs.nanolett.8b02433
[91] Schäferling, M., Yin, X. H. & Giessen, H. Formation of chiral fields in a symmetric environment. Opt. Express 20, 26326–26336 (2012). doi: 10.1364/OE.20.026326
[92] Davis, T. J. & Hendry, E. Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures. Phys. Rev. B 87, 085405 (2013). doi: 10.1103/PhysRevB.87.085405
[93] Hanifeh, M., Albooyeh, M. & Capolino, F. Helicity maximization below the diffraction limit. Preprint at https://arxiv.org/abs/1906.07170 (2019).
[94] Finazzi, M. et al. Quasistatic limit for plasmon-enhanced optical chirality. Phys. Rev. B 91, 195427 (2015). doi: 10.1103/PhysRevB.91.195427
[95] García-Etxarri, A. & Dionne, J. A. Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B 87, 235409 (2013). doi: 10.1103/PhysRevB.87.235409
[96] Yoo, S., Cho, M. & Park, Q. H. Globally enhanced chiral field generation by negative-index metamaterials. Phys. Rev. B 89, 161405 (2014). doi: 10.1103/PhysRevB.89.161405
[97] Ho, C. S. et al. Enhancing enantioselective absorption using dielectric nanospheres. ACS Photonics 4, 197–203 (2017). doi: 10.1021/acsphotonics.6b00701
[98] Solomon, M. L. et al. Enantiospecific optical enhancement of chiral sensing and separation with dielectric metasurfaces. ACS Photonics 6, 43–49 (2019). doi: 10.1021/acsphotonics.8b01365
[99] Yao, K. & Liu, Y. M. Enhancing circular dichroism by chiral hotspots in silicon nanocube dimers. Nanoscale 10, 8779–8786 (2018). doi: 10.1039/C8NR00902C
[100] Mohammadi, E. et al. Accessible superchiral near-fields driven by tailored electric and magnetic resonances in all-dielectric nanostructures. ACS Photonics 6, 1939–1946 (2019). doi: 10.1021/acsphotonics.8b01767
[101] Pellegrini, G. et al. Chiral surface waves for enhanced circular dichroism. Phys. Rev. B 95, 241402 (2017). doi: 10.1103/PhysRevB.95.241402
[102] Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and related quantities in electromagnetic theory. N. J. Phys. 14, 053050 (2012). doi: 10.1088/1367-2630/14/5/053050
[103] Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. N. J. Phys. 15, 033026 (2013). doi: 10.1088/1367-2630/15/3/033026
[104] Cameron, R. P. On the 'second potential' in electrodynamics. J. Opt. 16, 015708 (2014). doi: 10.1088/2040-8978/16/1/015708
[105] Alpeggiani, F. et al. Electromagnetic helicity in complex media. Phys. Rev. Lett. 120, 243605 (2018). doi: 10.1103/PhysRevLett.120.243605
[106] Crimin, F. et al. Optical helicity and chirality: conservation and sources. Appl. Sci. 9, 828 (2019). doi: 10.3390/app9050828
[107] Zhang, Q. F. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365, 1475–1478 (2019). doi: 10.1126/science.aax5415
[108] Yang, L. et al. Chiral nanoparticle-induced enantioselective amplification of molecular optical activity. Adv. Funct. Mater. 29, 1807307 (2019). doi: 10.1002/adfm.201970050
[109] Sun, P. et al. Helical nanoparticle-induced enantiospecific adsorption of N3 dyes. Chem. Commun. 54, 4270–4273 (2018). doi: 10.1039/C8CC01836G
[110] Ashkin, A. et al. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986). doi: 10.1364/OL.11.000288
[111] Crocker, J. C. et al. Entropic attraction and repulsion in binary colloids probed with a line optical tweezer. Phys. Rev. Lett. 82, 4352–4355 (1999). doi: 10.1103/PhysRevLett.82.4352
[112] Reiserer, A. et al. Ground-state cooling of a single atom at the center of an optical cavity. Phys. Rev. Lett. 110, 223003 (2013). doi: 10.1103/PhysRevLett.110.223003
[113] Cecconi, G. et al. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005). doi: 10.1126/science.1116702
[114] Grier, D. G. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935
[115] Li, H. T. et al. Evidence for resonance optical trapping of individual fluorophore-labeled antibodies using single molecule fluorescence spectroscopy. J. Am. Chem. Soc. 128, 5711–5717 (2006). doi: 10.1021/ja056997t
[116] Wen, J. D. et al. Following translation by single ribosomes one codon at a time. Nature 452, 598–603 (2008). doi: 10.1038/nature06716
[117] Chang, D. E. et al. Trapping and manipulation of isolated atoms using nanoscale plasmonic structures. Phys. Rev. Lett. 103, 123004 (2009). doi: 10.1103/PhysRevLett.103.123004
[118] Liu, M. et al. Light-driven nanoscale plasmonic motors. Nat. Nanotechnol. 5, 570–573 (2010). doi: 10.1038/nnano.2010.128
[119] Chen, J. et al. Optical pulling force. Nat. Photonics 5, 531–534 (2011). doi: 10.1038/nphoton.2011.153
[120] Maher-McWilliams, C., Douglas, P. & Barker, P. F. Laser-driven acceleration of neutral particles. Nat. Photonics 6, 386–390 (2012). doi: 10.1038/nphoton.2012.87
[121] Roxworthy, B. J. et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett. 12, 796–801 (2012). doi: 10.1021/nl203811q
[122] Neuman, K. C. & Block, S. M. Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).
[123] Verdeny, I. et al. Optical trapping: a review of essential concepts. Óptica Pura y. Aplicada 44, 527–551 (2011). http://dialnet.unirioja.es/servlet/articulo?codigo=6817725
[124] Lin, Q. & Lin, H. Z. On deriving the Maxwell stress tensor method for calculating the optical force and torque on an object in harmonic electromagnetic fields. Eur. J. Phys. 38, 045202 (2017). doi: 10.1088/1361-6404/aa6e1d
[125] Griffiths, D. J. Introduction to Electrodynamics 4th edn. (Pearson, Boston, 2014).
[126] Jackson, J. D. Classical Electrodynamics 3rd edn. (Wiley, Hoboken, 1999).
[127] Rahimzadegan, A. et al. Optical force and torque on dipolar dual chiral particles. Phys. Rev. B 94, 125123 (2016). doi: 10.1103/PhysRevB.94.125123
[128] Chen, H. J. et al. Optical torque on small chiral particles in generic optical fields. Opt. Express 25, 32867–32878 (2017). doi: 10.1364/OE.25.032867
[129] Ding, K. et al. Realization of optical pulling forces using chirality. Phys. Rev. A 89, 063825 (2014). doi: 10.1103/PhysRevA.89.063825
[130] Almaas, E. & Brevik, I. Radiation forces on a micrometer-sized sphere in an evanescent field. J. Optical Soc. Am. B 12, 2429–2438 (1995). doi: 10.1364/JOSAB.12.002429
[131] Barton, J. P., Alexander, D. R. & Schaub, S. A. Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam. J. Appl. Phys. 66, 4594–4602 (1989). doi: 10.1063/1.343813
[132] Arnaut, L. R. Chirality in multi-dimensional space with application to electromagnetic characterisation of multi-dimensional chiral and semi-chiral media. J. Electromagn. Waves Appl. 11, 1459–1482 (1997). doi: 10.1163/156939397X00549
[133] Wang, S. B. & Chan, C. T. Lateral optical force on chiral particles near a surface. Nat. Commun. 5, 3307 (2014). doi: 10.1038/ncomms4307
[134] Patterson, D., Schnell, M. & Doyle, J. M. Enantiomer-specific detection of chiral molecules via microwave spectroscopy. Nature 497, 475–477 (2013). doi: 10.1038/nature12150
[135] Smith, D. et al. Photophoretic separation of single-walled carbon nanotubes: a novel approach to selective chiral sorting. Phys. Chem. Chem. Phys. 16, 5221–5228 (2014). doi: 10.1039/C3CP54812K
[136] Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Extraordinary momentum and spin in evanescent waves. Nat. Commun. 5, 3300 (2014). doi: 10.1038/ncomms4300
[137] Tkachenko, G. & Brasselet, E. Optofluidic sorting of material chirality by chiral light. Nat. Commun. 5, 3577 (2014). doi: 10.1038/ncomms4577
[138] Hayat, A., Mueller, J. P. B. & Capasso, F. Lateral chirality-sorting optical forces. Proc. Natl Acad. Sci. USA 112, 13190–13194 (2015). doi: 10.1073/pnas.1516704112
[139] Tkachenko, G. & Brasselet, E. Helicity-dependent three-dimensional optical trapping of chiral microparticles. Nat. Commun. 5, 4491 (2014). doi: 10.1038/ncomms5491
[140] Allen, L. et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185
[141] Van Enk, S. J. & Nienhuis, G. Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields. J. Mod. Opt. 41, 963–977 (1994). doi: 10.1080/09500349414550911
[142] Van Enk, S. J. & Nienhuis, G. Spin and orbital angular momentum of photons. Europhys. Lett. 25, 497–501 (1994). doi: 10.1209/0295-5075/25/7/004
[143] Yílmaz, H. Introduction to the Theory of Relativity and the Principles of Modern Physics (A Blaisdell book in the Pure and Applied Sciences) (Blaisdell Pub. Co, New York, 1965).
[144] Jauch, J. M. & Rohrlich, F. The Theory of Photons and Electrons (Addison-Wesley, Cambridge, 1955).
[145] Barut, A. O. Electrodynamics and Classical Theory of Fields and Particles (Dover Books on Physics) (Dover, New York, 1980).
[146] Cohen-Tannoudji, C., Dupont-Roc, J. & Grynberg, G. Photons & Atoms (Wiley, New York, 1997).
[147] Leader, E. The angular momentum controversy: what's it all about and does it matter? Phys. Part. Nucl. 44, 926–929 (2013). doi: 10.1134/S1063779613060142
[148] Dávila Romero, L. C., Andrews, D. L. & Babiker, M. A quantum electrodynamics framework for the nonlinear optics of twisted beams. J. Opt. B 4, S66–S72 (2002). doi: 10.1088/1464-4266/4/2/370
[149] Loudon, R. Theory of the forces exerted by Laguerre-Gaussian light beams on dielectrics. Phys. Rev. A 68, 013806 (2003). doi: 10.1103/PhysRevA.68.013806
[150] Jáuregui, R. Rotational effects of twisted light on atoms beyond the paraxial approximation. Phys. Rev. A 70, 033415 (2004). doi: 10.1103/PhysRevA.70.033415
[151] García-García, J. et al. Simple technique for generating the perfect optical vortex. Opt. Lett. 39, 5305–5308 (2014). doi: 10.1364/OL.39.005305
[152] Barnett, S. M. et al. On the natures of the spin and orbital parts of optical angular momentum. J. Opt. 18, 064004 (2016). doi: 10.1088/2040-8978/18/6/064004
[153] Alexandrescu, A., Cojoc, D. & Fabrizio, E. D. Mechanism of angular momentum exchange between molecules and Laguerre-Gaussian beams. Phys. Rev. Lett. 96, 243001 (2006). doi: 10.1103/PhysRevLett.96.243001
[154] Mondal, P. K., Deb, B. & Majumder, S. Angular momentum transfer in interaction of Laguerre-Gaussian beams with atoms and molecules. Phys. Rev. A 89, 063418 (2014). doi: 10.1103/PhysRevA.89.063418
[155] Babiker, M. et al. Orbital angular momentum exchange in the interaction of twisted light with molecules. Phys. Rev. Lett. 89, 143601 (2002). doi: 10.1103/PhysRevLett.89.143601
[156] Andrews, D. L., Romero, L. C. D. & Babiker, M. On optical vortex interactions with chiral matter. Opt. Commun. 237, 133–139 (2004). doi: 10.1016/j.optcom.2004.03.093
[157] Van Veenendaal, M. & McNulty, I. Prediction of strong dichroism induced by X rays carrying orbital momentum. Phys. Rev. Lett. 98, 157401 (2007). doi: 10.1103/PhysRevLett.98.157401
[158] Araoka, F. et al. Interactions of twisted light with chiral molecules: an experimental investigation. Phys. Rev. A 71, 055401 (2005). doi: 10.1103/PhysRevA.71.055401
[159] Löffler, W., Broer, D. J. & Woerdman, J. P. Circular dichroism of cholesteric polymers and the orbital angular momentum of light. Phys. Rev. A 83, 065801 (2011). doi: 10.1103/PhysRevA.83.065801
[160] Forbes, K. A. & Andrews, D. L. Optical orbital angular momentum: twisted light and chirality. Opt. Lett. 43, 435–438 (2018). doi: 10.1364/OL.43.000435
[161] Reddy, I. V. A. K. et al. Interaction of structured light with a chiral plasmonic metasurface: giant enhancement of chiro-optic response. ACS Photonics 5, 734–740 (2018). doi: 10.1021/acsphotonics.7b01321
[162] Wang, S. et al. Angular momentum-dependent transmission of circularly polarized vortex beams through a plasmonic coaxial nanoring. IEEE Photonics J. 10, 5700109 (2018). http://ieeexplore.ieee.org/document/8240952/
[163] Brullot, W. et al. Resolving enantiomers using the optical angular momentum of twisted light. Sci. Adv. 2, e1501349 (2016). doi: 10.1126/sciadv.1501349
[164] Zambrana-Puyalto, X., Vidal, X. & Molina-Terriza, G. Angular momentum-induced circular dichroism in non-chiral nanostructures. Nat. Commun. 5, 4922 (2014). doi: 10.1038/ncomms5922
[165] Kerber, R. M. et al. Reading the orbital angular momentum of light using plasmonic nanoantennas. ACS Photonics 4, 891–896 (2017). doi: 10.1021/acsphotonics.6b00980
[166] Afanasev, A., Carlson, C. E. & Solyanik, M. Circular dichroism of twisted photons in non-chiral atomic matter. J. Opt. 19, 105401 (2017). doi: 10.1088/2040-8986/aa82c3
[167] Kong, X. T. et al. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett. 18, 2001–2008 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29420903
[168] Liu, T. J. et al. Chiral plasmonic nanocrystals for generation of hot electrons: toward polarization-sensitive photochemistry. Nano Lett. 19, 1395–1407 (2019). doi: 10.1021/acs.nanolett.8b05179
[169] Han, B. et al. Magnetic circular dichroism in nanomaterials: new opportunity in understanding and modulation of excitonic and plasmonic resonances. Adv. Mater. 32, 1801491 (2018). http://www.ncbi.nlm.nih.gov/pubmed/30345582
[170] Chen, S. M. et al. Strong nonlinear optical activity induced by lattice surface modes on plasmonic metasurface. Nano Lett. 19, 6278–6283 (2019). doi: 10.1021/acs.nanolett.9b02417
[171] Gui, L. L. et al. Nonlinear born-kuhn analog for chiral plasmonics. ACS Photonics 6, 3306–3314 (2019). doi: 10.1021/acsphotonics.9b01400
[172] Ma, W., Cheng, F. & Liu, Y. M. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018). doi: 10.1021/acsnano.8b03569
[173] So, S. et al. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020). doi: 10.1515/nanoph-2019-0474
[174] So, S. & Rho, J. Designing nanophotonic structures using conditional deep convolutional generative adversarial networks. Nanophotonics 8, 1255–1261 (2019). doi: 10.1515/nanoph-2019-0117
[175] So, S., Mun, J. & Rho, J. Simultaneous inverse-design of materials and structures via deep-learning: demonstration of dipole resonance engineering using core-shell nanoparticles. ACS Appl. Mater. Interfaces 11, 24264–24268 (2019). doi: 10.1021/acsami.9b05857
[176] Lee, H. E. et al. Amino-acid-and peptides-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018). doi: 10.1038/s41586-018-0034-1
[177] Lee, H. E. et al. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 11, 263 (2020). doi: 10.1038/s41467-019-14117-x
[178] Lee, Y. Y. et al. Plasmonic metamaterials for chiral sensing applications. Nanoscale 12, 58–66 (2020). doi: 10.1039/C9NR08433A
[179] Kulkarni, C. et al. Highly efficient and tunable filtering of electrons' spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020). doi: 10.1002/adma.201904965
[180] Im, S. W. et al. Chiral surface and geometry of metal nanocrystals. Adv. Mater. 32, 1905758 (2020). doi: 10.1002/adma.201905758