[1] Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A 45, 8185-8189 (1992).
[2] Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161-204 (2011).
[3] Liu, K. et al. Super-resolution radar imaging based on experimental OAM beams. Applied Physics Letters 110 (2017).
[4] Ng, J., Lin, Z. & Chan, C. T. Theory of Optical Trapping by an Optical Vortex Beam. Physical Review Letters 104, 103601 (2010).
[5] Mafu, M. et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Physical Review A 88, 032305 (2013).
[6] Yan, Y. et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications 5, 4876 (2014).
[7] Bozinovic, N. et al. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 340, 1545-1548 (2013).
[8] Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nature Photonics 14, 102-108 (2020).
[9] Liu, C. et al. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer. Opt. Express 24, 12534-12541 (2016).
[10] Kang, L., Li, H., Zhou, J., Zheng, S. & Gao, S. A Mode-Reconfigurable Orbital Angular Momentum Antenna With Simplified Feeding Scheme. IEEE Transactions on Antennas and Propagation 67, 4866-4871 (2019).
[11] Chen, P. et al. Digitalized Geometric Phases for Parallel Optical Spin and Orbital Angular Momentum Encoding. ACS Photonics 4, 1333-1338 (2017).
[12] Jin, Z. et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021). doi: 10.1186/s43593-021-00005-9
[13] Yang, Y. et al. Manipulation of Orbital-Angular-Momentum Spectrum Using Pinhole Plates. Physical Review Applied 12, 064007 (2019). doi: 10.1103/PhysRevApplied.12.064007
[14] Yu, N. et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[15] Kats, M. A. et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy. Proceedings of the National Academy of Sciences 109, 12364-12368 (2012). doi: 10.1073/pnas.1210686109
[16] Chong, M. -Z. et al. Spin-decoupled excitation and wavefront shaping of structured surface waves via on-chip terahertz metasurfaces. Nanoscale 15 , 4515-4522 (2023).
[17] Zhang, T. Y. et al. High-Efficiency Metasurface Emitters for Generating Arbitrarily Polarized Spatial Propagating Waves. Advanced Materials Technologies 7, 2200267 (2022). doi: 10.1002/admt.202200267
[18] Yin, L. -Z. , Zhao, J. , Chong, M. -Z. , Han, F. -Y. & Liu, P. -K. Ultrathin All-Angle Hyperbolic Metasurface Retroreflectors Based on Directed Routing of Canalized Plasmonics. ACS Applied Materials & Interfaces 14 (2022).
[19] Han, J. et al. Tailorable Polarization-Dependent Directional Coupling of Surface Plasmons. Advanced Functional Materials 32, 2111000 (2022). doi: 10.1002/adfm.202111000
[20] Wu, J. W. et al. Full-State Synthesis of Electromagnetic Fields using High Efficiency Phase-Only Metasurfaces. Advanced Functional Materials 30, 2004144 (2020). doi: 10.1002/adfm.202004144
[21] Chen, K. et al. Directional Janus Metasurface. Advanced Materials 32, 1906352 (2020). doi: 10.1002/adma.201906352
[22] Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nature Communications 8, 197 (2017). doi: 10.1038/s41467-017-00164-9
[23] Wei, M. et al. Extended Metasurface Spin Functionalities from Rotation of Elements. Advanced Optical Materials 10, 2201975 (2022). doi: 10.1002/adom.202201975
[24] Yang, L. -J. , Sun, S. & Sha, W. E. I. Manipulation of Orbital Angular Momentum Spectrum Using Shape-Tailored Metasurfaces. Advanced Optical Materials 9 , 2001711 (2021).
[25] Li, Q. et al. High-Purity Multi-Mode Vortex Beam Generation With Full Complex-Amplitude-Controllable Metasurface. IEEE Transactions on Antennas and Propagation 71, 774-782 (2023). doi: 10.1109/TAP.2022.3217192
[26] Yuan, Y. et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nature Communications 11, 4186 (2020). doi: 10.1038/s41467-020-17773-6
[27] Wen, D. et al. Broadband Multichannel Cylindrical Vector Beam Generation by a Single Metasurface. Laser & Photonics Reviews 16, 2200206 (2022).
[28] Zheng, C. et al. Fine manipulation of terahertz waves via all-silicon metasurfaces with an independent amplitude and phase. Nanoscale 13, 5809-5816 (2021). doi: 10.1039/D1NR00376C
[29] Zheng, C. et al. Creating Longitudinally Varying Vector Vortex Beams with an All-Dielectric Metasurface. Laser & Photonics Reviews 16, 2200236 (2022).
[30] Ke, J. C. et al. Linear and Nonlinear Polarization Syntheses and Their Programmable Controls based on Anisotropic Time-Domain Digital Coding Metasurface. Small Structures 2, 2000060 (2021). doi: 10.1002/sstr.202000060
[31] Feng, Z. et al. Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces. eLight 3, 21 (2023). doi: 10.1186/s43593-023-00054-2
[32] Yuan, S. S. A. et al. Approaching the Fundamental Limit of Orbital-Angular-Momentum Multiplexing Through a Hologram Metasurface. Physical Review Applied 16, 064042 (2021). doi: 10.1103/PhysRevApplied.16.064042
[33] Zhou, H. et al. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications. Opt. Express 30, 25418-25432 (2022). doi: 10.1364/OE.459720
[34] Dammann, H. & Klotz, E. Coherent Optical Generation and Inspection of Two-dimensional Periodic Structures. Optica Acta: International Journal of Optics 24, 505-515 (1977). doi: 10.1080/713819570
[35] Zhou, C. & Liu, L. Numerical study of Dammann array illuminators. Appl. Opt. 34, 5961-5969 (1995). doi: 10.1364/AO.34.005961
[36] Fu, S. et al. Orbital angular momentum comb generation from azimuthal binary phases. Advanced Photonics Nexus 1, 016003 (2022).