[1] Brewster, D. On the laws which regulate the polarisation of light by reflexion from transparent bodies. Philos. Trans. R. Soc. Lond. 105, 125-159 (1815).
[2] Lakhtakia, A. Would Brewster recognize today's Brewster angle? Opt. News 15, 14-18 (1989). doi: 10.1364/ON.15.6.000014
[3] Baranov, D. G. et al. Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal. Phys. Rev. B 92, 201405(R) (2015). doi: 10.1103/PhysRevB.92.201405
[4] Knott, E. F., Shaeffer, J. F. & Tuley, M. T. Radar Cross Section 2nd edn (Artech House, 1993).
[5] Landy, N. I. et al. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008). doi: 10.1103/PhysRevLett.100.207402
[6] Ye, D. X. et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. Phys. Rev. Lett. 111, 187402 (2013). doi: 10.1103/PhysRevLett.111.187402
[7] Tamayama, Y. et al. Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: experiment and theory. Phys. Rev. B 73, 193104 (2006). doi: 10.1103/PhysRevB.73.193104
[8] Huang, X. R., Peng, R. W. & Fan, R. H. Making metals transparent for white light by spoof surface plasmons. Phys. Rev. Lett. 105, 243901 (2010). doi: 10.1103/PhysRevLett.105.243901
[9] Alù, A. et al. Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings. Phys. Rev. Lett. 106, 123902 (2011). doi: 10.1103/PhysRevLett.106.123902
[10] Fan, R. H. et al. Transparent metals for ultrabroadband electromagnetic waves. Adv. Mater. 24, 1980-1986 (2012). doi: 10.1002/adma.201104483
[11] Aközbek, N. et al. Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave. Phys. Rev. B 85, 205430 (2012). doi: 10.1103/PhysRevB.85.205430
[12] Shen, Y. C. et al. Optical broadband angular selectivity. Science 343, 1499-1501 (2014). doi: 10.1126/science.1249799
[13] Paniagua-Domínguez, R. et al. Generalized Brewster effect in dielectric metasurfaces. Nat. Commun. 7, 10362 (2016). doi: 10.1038/ncomms10362
[14] Wang, C. et al. All-angle Brewster effect observed on a terahertz metasurface. Appl. Phys. Lett. 114, 191902 (2019). doi: 10.1063/1.5097742
[15] Luo, J. et al. Ultratransparent media and transformation optics with shifted spatial dispersions. Phys. Rev. Lett. 117, 223901 (2016). doi: 10.1103/PhysRevLett.117.223901
[16] Rahm, M. et al. Optical design of reflectionless complex media by finite embedded coordinate transformations. Phys. Rev. Lett. 100, 063903 (2008). doi: 10.1103/PhysRevLett.100.063903
[17] Lin, X. et al. Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials. Phys. Rev. A 94, 023836 (2016). doi: 10.1103/PhysRevA.94.023836
[18] Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717-754 (2004). doi: 10.1088/0034-4885/67/5/R03
[19] Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photonics 7, 579-582 (2013). doi: 10.1038/nphoton.2013.185
[20] Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780-1782 (2006). doi: 10.1126/science.1125907
[21] Nefedov, I. S. et al. Total absorption in asymmetric hyperbolic media. Sci. Rep. 3, 2662 (2013). doi: 10.1038/srep02662
[22] Hao, J. M. et al. High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251104 (2010). doi: 10.1063/1.3442904
[23] Qu, C. et al. Tailor the functionalities of metasurfaces based on a complete phase diagram. Phys. Rev. Lett. 115, 235503 (2015). doi: 10.1103/PhysRevLett.115.235503
[24] Tao, H. et al. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B 78, 241103(R) (2008). doi: 10.1103/PhysRevB.78.241103
[25] Liu, X. L. et al. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 207403 (2010). doi: 10.1103/PhysRevLett.104.207403
[26] Ra'Di, Y., Simovski, C. R. & Tretyakov, S. A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Appl. 3, 037001 (2015). doi: 10.1103/PhysRevApplied.3.037001
[27] Chen, H. T. et al. Manipulation of terahertz radiation using metamaterials. Laser Photonics Rev. 5, 513-533 (2011). doi: 10.1002/lpor.201000043
[28] Engheta, N. Thin absorbing screens using metamaterial surfaces. In Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium 392-395 (IEEE, 2002).
[29] Shen, X. P. et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett. 101, 154102 (2012). doi: 10.1063/1.4757879
[30] Horsley, S. A. R., Artoni, M. & La Rocca, G. C. Spatial Kramers-Kronig relations and the reflection of waves. Nat. Photonics 9, 436-439 (2015). doi: 10.1038/nphoton.2015.106
[31] Kats, M. A. et al. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20-24 (2013). doi: 10.1038/nmat3443
[32] Kats, M. A. & Capasso, F. Optical absorbers based on strong interference in ultra-thin films. Laser Photonics Rev. 10, 735-749 (2016). doi: 10.1002/lpor.201600098
[33] Cui, Y. X. et al. Plasmonic and metamaterial structures as electromagnetic absorbers. Laser Photonics Rev. 8, 495-520 (2014). doi: 10.1002/lpor.201400026
[34] Watts, C. M., Liu, X. L. & Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98-OP120 (2012).
[35] Riley, C. T. et al. Near-perfect broadband absorption from hyperbolic metamaterial nanoparticles. Proc. Natl Acad. Sci. USA 114, 1264-1268 (2017). doi: 10.1073/pnas.1613081114
[36] Baranov, D. G. et al. Coherent perfect absorbers: linear control of light with light. Nat. Rev. Mater. 2, 17064 (2017). doi: 10.1038/natrevmats.2017.64