[1] Puttnam, B. J. et al. S, C and extended L-band transmission with doped fiber and distributed Raman amplification. 2021 Optical Fiber Communications Conference and Exhibition (OFC). San Francisco: IEEE, 2021, 1-3.
[2] Winzer, P. J., Neilson, D. T. & Chraplyvy, A. R. Fiber-optic transmission and networking: the previous 20 and the next 20 years [Invited]. Optics Express 26, 24190-24239 (2018). doi: 10.1364/OE.26.024190
[3] Richardson, D. J., Fini, J. M. & Nelson, L. E. Space-division multiplexing in optical fibres. Nature Photonics 7, 354-362 (2013). doi: 10.1038/nphoton.2013.94
[4] Bozinovic, N. et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340, 1545-1548 (2013). doi: 10.1126/science.1237861
[5] Mello, D. A. A. et al. Impact of Polarization- and mode-dependent gain on the capacity of ultra-long-haul systems. Journal of Lightwave Technology 38, 303-318 (2020). doi: 10.1109/JLT.2019.2957110
[6] Sillard, P. et al. Few-mode fiber technology, deployments, and systems. Proceedings of the IEEE 110, 1804-1820 (2022). doi: 10.1109/JPROC.2022.3207012
[7] Ip, E. et al. Impact of mode-dependent loss on long-haul transmission systems using few-mode fibers. 2016 Optical Fiber Communications Conference and Exhibition (OFC). Anaheim: IEEE, 2016, 1-3.
[8] Bai, N. et al. Multimode fiber amplifier with tunable modal gain using a reconfigurable multimode pump. Optics Express 19, 16601-16611 (2011). doi: 10.1364/OE.19.016601
[9] Lopez-Galmiche, G. et al. Few-mode erbium-doped fiber amplifier with photonic lantern for pump spatial mode control. Optics Letters 41, 2588-2591 (2016).
[10] Jung, Y. et al. Cladding pumped few-mode EDFA for mode division multiplexed transmission. Optics Express 22, 29008-29013 (2014).
[11] Chen, H. et al. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications. Nature Photonics 10, 529-533 (2016). doi: 10.1038/nphoton.2016.125
[12] Kang, Q. Y. et al. Accurate modal gain control in a multimode erbium doped fiber amplifier incorporating ring doping and a simple LP01 pump configuration. Optics Express 20, 20835-20843 (2012). doi: 10.1364/OE.20.020835
[13] Genevaux, P. et al. A five-mode erbium-doped fiber amplifier for mode-division multiplexing transmission. Journal of Lightwave Technology 34, 456-462 (2016). doi: 10.1109/JLT.2015.2481082
[14] Li, Z. Q. et al. Amplification and transmission system with matching multi-layer ion-doped FM-EDFA. Journal of Lightwave Technology 41, 695-701 (2023). doi: 10.1109/JLT.2022.3218781
[15] Blau, M. et al. Variable optical attenuator and dynamic mode group equalizer for few mode fibers. Optics Express 22, 30520-30527 (2014). doi: 10.1364/OE.22.030520
[16] Fujisawa, T. et al. Silica-PLC based mode-dependent-loss equalizer for two LP mode transmission. 2022 Optical Fiber Communications Conference and Exhibition (OFC). San Diego: IEEE, 2022, 1-3.
[17] Jung, Y. , Alam, S. U. & Richardson, D J. All-fiber spatial mode selective filter for compensating mode dependent loss in MDM transmission systems. 2015 Optical Fiber Communications Conference and Exhibition (OFC). Los Angeles: IEEE, 2015, 1-3.
[18] Zhu, J. L. et al. Few-mode gain-flattening filter using LPFG in weakly-coupled double-cladding FMF. Journal of Lightwave Technology 39, 4439-4446 (2021). doi: 10.1109/JLT.2021.3071266
[19] Beresna, M., Gecevičius, M. & Kazansky, P. G. Ultrafast laser direct writing and nanostructuring in transparent materials. Advances in Optics and Photonics 6, 293-339 (2014). doi: 10.1364/AOP.6.000293
[20] Jia, Y. C., Wang, S. X. & Chen, F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electronic Advances 3, 190042 (2020). doi: 10.29026/oea.2020.190042
[21] Tan, D. Z. et al. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Advanced Photonics 3, 024002 (2021).
[22] Li, C. X. et al. Femtosecond laser direct writing of a 3D microcantilever on the tip of an optical fiber sensor for on-chip optofluidic sensing. Lab on a Chip 22, 3734-3743 (2022). doi: 10.1039/D2LC00625A
[23] Zhao, Y. et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements. Sensors and Actuators B:Chemical 353, 131134 (2022). doi: 10.1016/j.snb.2021.131134
[24] Dash, J. N. et al. Rectangular single-mode polymer optical fiber for femtosecond laser inscription of FBGs. Photonics Research 9, 1931-1938 (2021). doi: 10.1364/PRJ.434252
[25] Wolf, A. et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electronic Advances 5, 210055 (2022). doi: 10.29026/oea.2022.210055
[26] Yang, C. L. et al. Mode converter with C+L band coverage based on the femtosecond laser inscribed long period fiber grating. Optics Letters 46, 3340-3343 (2021). doi: 10.1364/OL.431760
[27] Jiang, C. et al. Femtosecond laser inscribed parallel long-period fiber gratings for multi-channel core mode conversion. Optics Letters 47, 3207-3210 (2022). doi: 10.1364/OL.461547
[28] Sakakura, M. et al. Ultralow-loss geometric phase and polarization shaping by ultrafast laser writing in silica glass. Light:Science & Applications 9, 15 (2020).
[29] Reupert, A. et al. Angular scattering pattern of femtosecond laser-induced refractive index modifications in optical fibers. Advanced Optical Materials 8, 2000633 (2020). doi: 10.1002/adom.202000633
[30] Lu, J. F. et al. Tailoring chiral optical properties by femtosecond laser direct writing in silica. Light:Science & Applications 12, 46 (2023).
[31] Zhang, C. et al. Femtosecond laser micro-machining enabled all-fiber mode selective converter. Optics Letters 44, 5941-5944 (2019). doi: 10.1364/OL.44.005941
[32] Li, Y. L. et al. High purity optical vortex generation in a fiber Bragg grating inscribed by a femtosecond laser. Optics Letters 45, 6679-6682 (2020). doi: 10.1364/OL.410277
[33] Giles, C. R. & Desurvire, E. Modeling Erbium-doped fiber amplifiers. Journal of Lightwave Technology 9, 271-283 (1991). doi: 10.1109/50.65886