[1] |
Collier, R. Optical Holography. (Amsterdam: Elsevier, 2013). |
[2] |
Goodman, J. W. Introduction to Fourier Optics. 3rd edn. (Englewood: Roberts & Co., 2005). |
[3] |
Hariharan, P. Optical Holography: Principles, Techniques, and Applications. 2nd edn. (Cambridge: Cambridge University Press, 1996). |
[4] |
Schnars, U. et al. Digital holography. in Digital Holography and Wavefront Sensing (eds Schnars, U. et al.) (Berlin, Heidelberg: Springer, 2015), 39-68. |
[5] |
Poon, T. C. & Liu, J. P. Introduction to Modern Digital Holography: with MATLAB. (Cambridge: Cambridge University Press, 2014). |
[6] |
Shimobaba, T. et al. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL. Optics Express 18, 9955-9960 (2010). doi: 10.1364/OE.18.009955 |
[7] |
Takada, N. et al. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system. Applied Optics 51, 7303-7307 (2012). doi: 10.1364/AO.51.007303 |
[8] |
Ripoll, O., Kettunen, V. & Herzig, H. P. Review of iterative Fourier-transform algorithms for beam shaping applications. Optical Engineering 43, 2549-2548 (2004). doi: 10.1117/1.1804543 |
[9] |
Soĭfer, V. A. Methods for Computer Design of Diffractive Optical Elements. (New York: John Willey & Sons, Inc., 2002). |
[10] |
He, Z. H. et al. Optimal quantization for amplitude and phase in computer-generated holography. Optics Express 29, 119-133 (2021). doi: 10.1364/OE.414160 |
[11] |
Ruffato, G. et al. Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders. Scientific Reports 7, 18011 (2017). doi: 10.1038/s41598-017-18147-7 |
[12] |
Long, P. & Hsu, D. Quantization and sampling considerations of computer-generated hologram for optical interconnection. Proceedings of SPIE 1461, Practical Holography V. San Jose, CA, United States: SPIE, 1991. |
[13] |
Khan, M. S. et al. Polymer-based diffractive optical elements for rear end automotive applications: design and fabrication process. Applied Optics 57, 9106-9113 (2018). doi: 10.1364/AO.57.009106 |
[14] |
Schauer, S. et al. Tunable diffractive optical elements based on shape-memory polymers fabricated via hot embossing. ACS Applied Materials & Interfaces 8, 9423-9430 (2016). |
[15] |
Winfield, R. J. , et al. Production of polymer diffractive optics by contact printing. Proceedings of SPIE 4876. SPIE, (2003). |
[16] |
Aziz, S. B. et al. A comprehensive review on optical properties of polymer electrolytes and composites. Materials 13, 3675 (2020). doi: 10.3390/ma13173675 |
[17] |
Hutchinson, M. H. et al. Optical properties of polylactides. Journal of Polymers and the Environment 14, 119-124 (2006). doi: 10.1007/s10924-006-0001-z |
[18] |
Hossain, S. Optical properties of polymers and their applications. Theses 1685. (2019). at https://digitalcommons.njit.edu/theses/1685/. |
[19] |
Arif, U. et al. Biocompatible polymers and their potential biomedical applications: a review. Current Pharmaceutical Design 25, 3608-3619 (2019). doi: 10.2174/1381612825999191011105148 |
[20] |
PLA is an FDA-approved generally recognized as safe (GRAS) polymer. at https://www.accessdata.fda.gov/cdrh_docs/pdf8/K082276.pdf. |
[21] |
Peng, L. F. et al. Micro hot embossing of thermoplastic polymers: a review. Journal of Micromechanics and Microengineering 24, 013001 (2014). doi: 10.1088/0960-1317/24/1/013001 |
[22] |
Deshmukh, S. S. & Goswami, A. Hot Embossing of polymers-a review. Materials Today:Proceedings 26, 405-414 (2020). doi: 10.1016/j.matpr.2019.12.067 |
[23] |
Sun, J. Y. et al. Development and application of hot embossing in polymer processing: a review. ES Materials & Manufacturing 6, 3-17 (2019). |
[24] |
Ravi-Kumar, S. et al. Laser ablation of polymers: a review. Polymer International 68, 1391-1401 (2019). doi: 10.1002/pi.5834 |
[25] |
Treviño-Palacios, C. G., Zapata-Nava, O. J. & Olivares-Pérez, A. Optical damage as a computer generated hologram recording mechanism. Journal of Applied Research and Technology 13, 591-595 (2015). doi: 10.1016/j.jart.2015.10.015 |
[26] |
Wang, Z. P. et al. High-quality micropattern printing by interlacing-pattern holographic femtosecond pulses. Nanophotonics 9, 2895-2904 (2020). doi: 10.1515/nanoph-2020-0138 |
[27] |
Rajput, D. et al. Solution-cast high-aspect-ratio polymer structures from direct-write templates. ACS Applied Materials & Interfaces 5, 1-5 (2013). |
[28] |
Brinker, C. J. Dip coating. in Chemical Solution Deposition of Functional Oxide Thin Films (eds Schneller, T. et al.) (Vienna: Springer, 2013), 233-261. |
[29] |
Levine, D. P. Vancomycin: a history. Clinical Infectious Diseases 42 Suppl 1, S5-S12 (2006). |
[30] |
Álvarez, R. et al. Optimizing the clinical use of vancomycin. Antimicrobial Agents and Chemotherapy 60, 2601-2609 (2016). doi: 10.1128/AAC.03147-14 |
[31] |
Xu, L. B., Crawford, K. & Gorman, C. B. Effects of temperature and pH on the degradation of poly (lactic acid) brushes. Macromolecules 44, 4777-4782 (2011). doi: 10.1021/ma2000948 |
[32] |
Lazzari, S. et al. Modeling the pH-dependent PLA oligomer degradation kinetics. Polymer Degradation and Stability 110, 80-90 (2014). doi: 10.1016/j.polymdegradstab.2014.08.012 |
[33] |
Sharma, S. K. & Mudhoo, A. A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications. (Cambridge: RSC Publishing, 2011). |
[34] |
Cambiasso, J., Goyanes, S. & Ledesma, S. Holographic gratings recorded in poly (lactic acid)/azo-dye films. Optical Materials 47, 72-77 (2015). doi: 10.1016/j.optmat.2015.06.002 |
[35] |
Gai, M. Y. et al. Polylactic acid sealed polyelectrolyte multilayer microchambers for entrapment of salts and small hydrophilic molecules precipitates. ACS Applied Materials & Interfaces 9, 16536-16545 (2017). |
[36] |
Gai, M. Y. et al. Polylactic acid nano-and microchamber arrays for encapsulation of small hydrophilic molecules featuring drug release via high intensity focused ultrasound. Nanoscale 9, 7063-7070 (2017). doi: 10.1039/C7NR01841J |
[37] |
Sindeeva, O. A. et al. Polylactic acid-based patterned matrixes for site-specific delivery of neuropeptides on-demand: functional NGF effects on human neuronal cells. Frontiers in Bioengineering and Biotechnology 8, 497 (2020). doi: 10.3389/fbioe.2020.00497 |
[38] |
Zhang, J. X. et al. Microchamber arrays made of biodegradable polymers for enzymatic release of small hydrophilic cargos. Soft Matter 16, 2266-2275 (2020). doi: 10.1039/C9SM01856E |
[39] |
Sindeeva, O. A. et al. Effect of a controlled release of epinephrine hydrochloride from PLGA microchamber array: in vivo studies. ACS Applied Materials & Interfaces 10, 37855-37864 (2018). |
[40] |
Kurochkin, M. A. et al. Laser-triggered drug release from polymeric 3-D micro-structured films via optical fibers. Materials Science and Engineering: C 110, 110664 (2020). doi: 10.1016/j.msec.2020.110664 |
[41] |
Zhang, J. X. et al. Stimuli-responsive microarray films for real-time sensing of surrounding media, temperature, and solution properties via diffraction patterns. ACS Applied Materials & Interfaces 12, 19080-19091 (2020). |
[42] |
Tuchin, V. V. Optical clearing of tissues and blood using the immersion method. Journal of Physics D: Applied Physics 38, 2497-2518 (2005). doi: 10.1088/0022-3727/38/15/001 |
[43] |
Zhu, D. et al. Recent progress in tissue optical clearing. Laser & Photonics Reviews 7, 732-757 (2013). |
[44] |
Bashkatov, A. N. et al. Measurement of tissue optical properties in the context of tissue optical clearing. Journal of Biomedical Optics 23, 091416 (2018). |
[45] |
Oliveira, L. M. C. & Tuchin, V. V. The Optical Clearing Method: a New Tool for Clinical Practice and Biomedical Engineering. (Cham: Springer, 2019). |
[46] |
Yu, T. T. et al. Physical and chemical mechanisms of tissue optical clearing. iScience 24, 102178 (2021). doi: 10.1016/j.isci.2021.102178 |
[47] |
Sdobnov, A. Y. et al. Recent progress in tissue optical clearing for spectroscopic application. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy 197, 216-229 (2018). doi: 10.1016/j.saa.2018.01.085 |
[48] |
Tuchin, V. V., Zhu, D. & Genina, E. A. Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging. (Boca Raton: CRC Press, 2022). |
[49] |
Wyrowski, F. Diffraction efficiency of analog and quantized digital amplitude holograms: analysis and manipulation. Journal of the Optical Society of America A 7, 383-393 (1990). doi: 10.1364/JOSAA.7.000383 |
[50] |
Wlodarczyk, K. L. et al. Laser microsculpting for the generation of robust diffractive security markings on the surface of metals. Journal of Materials Processing Technology 222, 206-218 (2015). doi: 10.1016/j.jmatprotec.2015.03.001 |
[51] |
Wyrowski, F. Characteristics of diffractive optical elements/digital holograms. Proceedings of SPIE 1211, Computer and Optically Formed Holographic Optics. Los Angeles, CA, United States: SPIE, 1990. |
[52] |
Cirino, G. A. et al. Digital holography: computer-generated holograms and diffractive optics in scalar diffraction domain. in Holography- Different Fields of Application (ed Monroy, F.) (Rijeka: IntechOpen, 2011). |