[1] |
Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73-76 (1990). doi: 10.1126/science.2321027 |
[2] |
Weber, B. & Helmchen, F. Optical Imaging of Neocortical Dynamics (Humana Press; Springer, New York, 2014). |
[3] |
Wang, T. et al. Three-photon imaging of mouse brain structure and function through the intact skull. Nat. Methods 15, 789-792 (2018). doi: 10.1038/s41592-018-0115-y |
[4] |
Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932-940 (2005). doi: 10.1038/nmeth818 |
[5] |
Bar-Noam, A. S., Farah, N. & Shoham, S. Correction-free remotely scanned two-photon in vivo mouse retinal imaging. Light.: Sci. Appl. 5, e16007 (2016). doi: 10.1038/lsa.2016.7 |
[6] |
Grewe, B. F., Voigt, F. F., van 't Hoff, M. & Helmchen, F. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Express 2, 2035-2046 (2011). doi: 10.1364/BOE.2.002035 |
[7] |
Lu, R. et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat. Neurosci. 20, 620-628 (2017). doi: 10.1038/nn.4516 |
[8] |
Tsai, P. S. et al. Ultra-large field-of-view two-photon microscopy. Opt. Express 23, 13833-13847 (2015). doi: 10.1364/OE.23.013833 |
[9] |
Stirman, J. N., Smith, I. T., Kudenov, M. W. & Smith, S. L. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. 34, 857-862 (2016). doi: 10.1038/nbt.3594 |
[10] |
Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5, e14472 (2016). doi: 10.7554/eLife.14472 |
[11] |
Chen, J. L., Voigt, F. F., Javadzadeh, M., Krueppel, R. & Helmchen, F. Long-range population dynamics of anatomically defined neocortical networks. eLife 5, e14679 (2016). doi: 10.7554/eLife.14679 |
[12] |
Cheng, A., Gonçalves, J. T., Golshani, P., Arisaka, K. & Portera-Cailliau, C. Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing. Nat. Methods 8, 139 (2011). doi: 10.1038/nmeth.1552 |
[13] |
Terada, S. I., Kobayashi, K., Ohkura, M., Nakai, J. & Matsuzaki, M. Super-wide-field two-photon imaging with a micro-optical device moving in post-objective space. Nat. Commun. 9, 3550 (2018). doi: 10.1038/s41467-018-06058-8 |
[14] |
Gauthier, J. L. & Tank, D. W. A dedicated population for reward coding in the hippocampus. Neuron 99, 179-193 (2018). doi: 10.1016/j.neuron.2018.06.008 |
[15] |
Qin, H. et al. A visual-cue-dependent memory circuit for place navigation. Neuron 99, 47-55 (2018). doi: 10.1016/j.neuron.2018.05.021 |
[16] |
Lecoq, J. et al. Visualizing mammalian brain area interactions by dual-axis two-photon calcium imaging. Nat. Neurosci. 17, 1825-1829 (2014). doi: 10.1038/nn.3867 |
[17] |
Wagner, M. J. et al. Shared cortex-cerebellum dynamics in the execution and learning of a motor task. Cell 177, 669-682 (2019). doi: 10.1016/j.cell.2019.02.019 |
[18] |
Silva, A. J. Miniaturized two-photon microscope: seeing clearer and deeper into the brain. Light.: Sci. Appl. 6, e17104 (2017). doi: 10.1038/lsa.2017.104 |
[19] |
Barretto, R. P. & Schnitzer, M. J. In vivo microendoscopy of the hippocampus. Cold Spring Harb. Protoc. 2012, 1092-1099 (2012). |
[20] |
Busche, M. A. et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer's disease. Proc. Natl Acad. Sci. USA 109, 8740-8745 (2012). doi: 10.1073/pnas.1206171109 |
[21] |
Buzsaki, G. & Mizuseki, K. The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15, 264-278 (2014). doi: 10.1038/nrn3687 |
[22] |
Zong, W. et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 14, 713-719 (2017). doi: 10.1038/nmeth.4305 |
[23] |
Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods 9, 201-208 (2012). doi: 10.1038/nmeth.1851 |
[24] |
Packer, A. M., Russell, L. E., Dalgleish, H. W. & Hausser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140-146 (2015). doi: 10.1038/nmeth.3217 |
[25] |
Nadella, K. M. N. S. et al. Random-access scanning microscopy for 3D imaging in awake behaving animals. Nat. Methods 13, 1001-1004 (2016). doi: 10.1038/nmeth.4033 |
[26] |
Cui, M. Random-access imaging of awake behaving animals. Light.: Sci. Appl. 6, e16275 (2017). |
[27] |
Zhao, Y.-J. et al. Skull optical clearing window for in vivo imaging of the mouse cortex at synaptic resolution. Light.: Sci. Appl. 7, 17153 (2018). doi: 10.1038/lsa.2017.153 |
[28] |
Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light.: Sci. Appl. 3, e165 (2014). doi: 10.1038/lsa.2014.46 |
[29] |
Meng, G. et al. High-throughput synapse-resolving two-photon fluorescence microendoscopy for deep-brain volumetric imaging in vivo. eLife 8, e40805 (2019). doi: 10.7554/eLife.40805 |
[30] |
Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307-1312 (2010). doi: 10.1038/nature08947 |
[31] |
Jia, H., Rochefort, N. L., Chen, X. & Konnerth, A. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat. Protoc. 6, 28-35 (2011). doi: 10.1038/nprot.2010.169 |
[32] |
Varga, Z., Jia, H., Sakmann, B. & Konnerth, A. Dendritic coding of multiple sensory inputs in single cortical neurons in vivo. Proc. Natl Acad. Sci. USA 108, 15420-15425 (2011). doi: 10.1073/pnas.1112355108 |
[33] |
Hill, D. N., Varga, Z., Jia, H., Sakmann, B. & Konnerth, A. Multibranch activity in basal and tuft dendrites during firing of layer 5 cortical neurons in vivo. Proc. Natl Acad. Sci. USA 110, 13618-13623 (2013). doi: 10.1073/pnas.1312599110 |
[34] |
Jia, H., Varga, Z., Sakmann, B. & Konnerth, A. Linear integration of spine Ca2+ signals in layer 4 cortical neurons in vivo. Proc. Natl Acad. Sci. USA 111, 9277-9282 (2014). doi: 10.1073/pnas.1408525111 |
[35] |
Tischbirek, C., Birkner, A., Jia, H., Sakmann, B. & Konnerth, A. Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator. Proc. Natl Acad. Sci. USA 112, 11377-11382 (2015). doi: 10.1073/pnas.1514209112 |
[36] |
Wang, M. et al. Frequency selectivity of echo responses in the mouse primary auditory cortex. Sci. Rep. 8, 49 (2018). doi: 10.1038/s41598-017-18465-w |
[37] |
Li, R. et al. Two-photon functional imaging of the auditory cortex in behaving mice: from neural networks to single spines. Front Neural Circuits 12, 33 (2018). doi: 10.3389/fncir.2018.00033 |
[38] |
Zhang, Q. C. et al. Locomotion-related population cortical Ca2+ transients in freely behaving mice. Front. Neural Circuit. 11, 24 (2017). |
[39] |
Li, J. C. et al. Primary auditory cortex is required for anticipatory motor response. Cereb. Cortex 27, 3254-3271 (2017). doi: 10.1093/cercor/bhx079 |
[40] |
Guan, J. H. et al. NeuroSeg: automated cell detection and segmentation for in vivo two-photon Ca2+ imaging data. Brain Struct. Funct. 223, 519-533 (2018). doi: 10.1007/s00429-017-1545-5 |