[1] |
Calvin, J. J. , Brewer, A. S. & Alivisatos, A. P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nature Synthesis 1 , 127-137 (2022). |
[2] |
Dong, Y. T. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology 15, 668-674 (2020). doi: 10.1038/s41565-020-0714-5 |
[3] |
Zhang, L. et al. High-performance quasi-2D perovskite light-emitting diodes: from materials to devices. Light: Science & Applications 10 , 61 (2021). |
[4] |
Tian, J. Y. et al. Perovskite quantum dot one-dimensional topological laser. Nature Communications 14, 1433 (2023). doi: 10.1038/s41467-023-36963-6 |
[5] |
Qin, C. J. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53-57 (2020). doi: 10.1038/s41586-020-2621-1 |
[6] |
Jiang, Y. Z. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nature Communications 12, 336 (2021). doi: 10.1038/s41467-020-20555-9 |
[7] |
Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688-694 (2022). doi: 10.1038/s41586-022-05304-w |
[8] |
Wang, J. et al. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nature Communications 11, 177 (2020). doi: 10.1038/s41467-019-13909-5 |
[9] |
Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587-593 (2021). doi: 10.1038/s41586-021-03285-w |
[10] |
Fakharuddin, A. et al. Perovskite light-emitting diodes. Nature Electronics 5, 203-216 (2022). doi: 10.1038/s41928-022-00745-7 |
[11] |
Zhan, Z. J. et al. Ionic solvent-assisted MAPbBr3 perovskite film for two-photon pumped single-mode laser. The Journal of Physical Chemistry Letters 14, 7903-7909 (2023). doi: 10.1021/acs.jpclett.3c01959 |
[12] |
Hu, Z. P. et al. Advances in metal halide perovskite lasers: synthetic strategies, morphology control, and lasing emission. Advanced Photonics 3, 034002 (2021). |
[13] |
Zhao, F. Y. et al. Toward continuous-wave pumped metal halide perovskite lasers: strategies and challenges. ACS Nano 16, 7116-7143 (2022). doi: 10.1021/acsnano.1c11539 |
[14] |
Ren, K. et al. Strongly-confined CsPbI3 quantum dots by surface cleaning-induced ligand exchange for spectrally stable pure-red light-emitting diodes with efficiency exceeding 26%. ACS Materials Letters 6, 4115-4123 (2024). doi: 10.1021/acsmaterialslett.4c00912 |
[15] |
Wang, R., Xiang, H. Y. & Zeng, H. B. Carrier balanced distribution regulation of multi-emissive centers in tandem PeLEDs. Journal of Inorganic Materials 38, 1062-1068 (2023). doi: 10.15541/jim20230022 |
[16] |
Wang, R. et al. Minimizing energy barrier in intermediate connection layer for monolithic tandem WPeLEDs with wide color gamut. Advanced Functional Materials 33, 2215189 (2023). doi: 10.1002/adfm.202215189 |
[17] |
Jiang, J. Y. et al. High‐color‐rendition white QLEDs by balancing red, green and blue centres in eco‐friendly ZnCuGaS: In@ZnS quantum dots. Advanced Materials 36, 2304772 (2024). doi: 10.1002/adma.202304772 |
[18] |
Yakunin, S. et al. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications 6, 8056 (2015). doi: 10.1038/ncomms9056 |
[19] |
Yang, H. Y. et al. Universal surface repairing strategy enabling suppressed Auger recombination in CsPbBr3 perovskite quantum dots for low threshold lasing in a superlattice microcavity. Advanced Optical Materials 12, 2400141 (2024). doi: 10.1002/adom.202400141 |
[20] |
Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 15, 3692-3696 (2015). doi: 10.1021/nl5048779 |
[21] |
Galar, P. et al. Perovskite-quantum dots interface: Deciphering its ultrafast charge carrier dynamics. Nano Energy 49, 471-480 (2018). doi: 10.1016/j.nanoen.2018.04.069 |
[22] |
Lu, C. et al. Cesium oleate precursor preparation for lead halide perovskite nanocrystal synthesis: The influence of excess oleic acid on achieving solubility, conversion, and reproducibility. Chemistry of Materials 31, 62-67 (2019). doi: 10.1021/acs.chemmater.8b04876 |
[23] |
Huang, H. H. et al. Controllable colloidal synthesis of MAPbI3 perovskite nanocrystals for dual-mode optoelectronic applications. Nano Letters 23, 9143-9150 (2023). doi: 10.1021/acs.nanolett.3c03354 |
[24] |
Hu, J. C. et al. High-efficiency pure-red CsPbI3 quantum dot light-emitting diodes enabled by strongly electrostatic potential solvent and sequential ligand post-treatment process. Nano Letters 24, 4571-4579 (2024). doi: 10.1021/acs.nanolett.4c00651 |
[25] |
Wei, S. B. et al. Strongly‐confined CsPbBr3 perovskite quantum dots with ultralow trap density and narrow size distribution for efficient pure‐blue light‐emitting diodes. Small 20, 2400885 (2024). |
[26] |
Quintero-Bermudez, R. et al. Small-band-offset perovskite shells increase Auger lifetime in quantum dot solids. ACS Nano 11, 12378-12384 (2017). doi: 10.1021/acsnano.7b06363 |
[27] |
Li, X. M. et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13, 1603996 (2017). doi: 10.1002/smll.201603996 |
[28] |
Begum, R. et al. Engineering interfacial charge transfer in CsPbBr3 perovskite nanocrystals by heterovalent doping. Journal of the American Chemical Society 139, 731-737 (2017). doi: 10.1021/jacs.6b09575 |
[29] |
Guo, J. et al. Entropy-driven strongly confined low-toxicity pure-red perovskite quantum dots for spectrally stable light-emitting diodes. Nano Letters 24, 417-423 (2024). doi: 10.1021/acs.nanolett.3c04214 |
[30] |
Zou, Y. Q. et al. A practical approach toward highly reproducible and high‐quality perovskite films based on an aging treatment. Advanced Materials 36, 2307024 (2024). doi: 10.1002/adma.202307024 |
[31] |
Wu, X. F. et al. Synergistic regulation effect of magnesium and acetate ions on structural rigidity for synthesizing an efficient and robust CsPbI3 perovskite toward red light-emitting devices. Dalton Transactions 52, 2175-2181 (2023). doi: 10.1039/D2DT03816A |
[32] |
Abdelsamie, M. et al. Impact of processing on structural and compositional evolution in mixed metal halide perovskites during film formation. Advanced Functional Materials 30, 2001752 (2020). doi: 10.1002/adfm.202001752 |
[33] |
Yan, D. D. et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small 15, 1901173 (2019). doi: 10.1002/smll.201901173 |
[34] |
Morris, T. & Zubkov, T. Steric effects of carboxylic capping ligands on the growth of the CdSe quantum dots. Colloids and Surfaces A: Physicochemical and Engineering Aspects 443, 439-449 (2014). doi: 10.1016/j.colsurfa.2013.11.046 |
[35] |
Luo, B. B. et al. Organolead halide perovskite nanocrystals: branched capping ligands control crystal size and stability. Angewandte Chemie International Edition 55, 8864-8868 (2016). doi: 10.1002/anie.201602236 |
[36] |
Shinde, A., Gahlaut, R. & Mahamuni, S. Low-temperature photoluminescence studies of CsPbBr3 quantum dots. The Journal of Physical Chemistry C 121, 14872-14878 (2017). doi: 10.1021/acs.jpcc.7b02982 |
[37] |
Huang, S. H. et al. Enhanced amplified spontaneous emission in quasi-2D perovskite by facilitating energy transfer. ACS Applied Materials & Interfaces 14, 33842-33849 (2022). |
[38] |
Li, Y. L. et al. Biexciton Auger recombination in mono-dispersed, quantum-confined CsPbBr3 perovskite nanocrystals obeys universal volume-scaling. Nano Research 12, 619-623 (2019). doi: 10.1007/s12274-018-2266-7 |
[39] |
Li, Y. L. et al. Size‐and halide‐dependent Auger recombination in lead halide perovskite nanocrystals. Angewandte Chemie 132, 14398-14401 (2020). doi: 10.1002/ange.202004668 |
[40] |
Bi, C. H. et al. Improved stability and photodetector performance of CsPbI3 perovskite quantum dots by ligand exchange with aminoethanethiol. Advanced Functional Materials 29, 1902446 (2019). doi: 10.1002/adfm.201902446 |
[41] |
Bi, C. H. et al. Thermally stable copper (II)-doped cesium lead halide perovskite quantum dots with strong blue emission. The Journal of Physical Chemistry Letters 10, 943-952 (2019). doi: 10.1021/acs.jpclett.9b00290 |
[42] |
Ravi, V. K. et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. The Journal of Physical Chemistry Letters 8, 4988-4994 (2017). doi: 10.1021/acs.jpclett.7b02192 |
[43] |
Yu, Z. L. et al. Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr3. Journal of Physics: Condensed Matter 32, 205504 (2020). doi: 10.1088/1361-648X/ab6e90 |
[44] |
Yang, Y., Hou, C. J. & Liang, T. X. Energetic and electronic properties of CsPbBr3 surfaces: a first-principles study. Physical Chemistry Chemical Physics 23, 7145-7152 (2021). doi: 10.1039/D0CP04893C |
[45] |
Liu, Y. L. et al. Surface-emitting perovskite random lasers for speckle-free imaging. ACS Nano 13, 10653-10661 (2019). doi: 10.1021/acsnano.9b04925 |
[46] |
Zhan, Z. J. et al. Thermally evaporated MAPbBr3 perovskite random laser with improved speckle-free laser imaging. ACS Photonics 10, 3077-3086 (2023). doi: 10.1021/acsphotonics.3c00435 |