[1] Wang, D. H. et al. Observation of polarity-switchable photoconductivity in III-nitride/MoSx core–shell nanowires. Light: Science & Applications 11 , 227 (2022).
[2] Wang, R. et al. Bi-piezoelectric effect assisted ZnO nanorods/PVDF–HFP spongy photocatalyst for enhanced performance on degrading organic pollutant. Chemical Engineering Journal 439, 135787 (2022). doi: 10.1016/j.cej.2022.135787
[3] Maduro, L. et al. Position–controlled fabrication of vertically aligned Mo/MoS2 core–shell nanopillar arrays. Advanced Functional Materials 32, 2107880 (2022). doi: 10.1002/adfm.202107880
[4] Wei, C. et al. Ultra-wideband waveguide-coupled photodiodes heterogeneously integrated on a thin-film lithium niobate platform. Light: Advanced Manufacturing 4, 30 (2023).
[5] Cai, Q. et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light: Science & Applications 10 , 94 (2021).
[6] Peng, X. C. et al. Laser–based defect characterization and removal process for manufacturing fused silica optic with high ultraviolet laser damage threshold. Light: Advanced Manufacturing 4, 181-194 (2023).
[7] Cossuet, T. et al. ZnO/CuCrO2 core-shell nanowire heterostructures for self-Powered UV photodetectors with fast response. Advanced Functional Materials 28, 1803142 (2018). doi: 10.1002/adfm.201803142
[8] Chen, L. H. et al. From UV to vis broadband photodetectors based on ZnO/CuO/NiO core–shell–shell heterojunction nanostructures. ACS Applied Nano Materials 6, 9968-9974 (2023). doi: 10.1021/acsanm.3c02229
[9] Kim, D. et al. Uniaxial strain engineering via core position control in CdSe/CdS core/shell nanorods and their optical response. ACS Nano 16, 14713-14722 (2022). doi: 10.1021/acsnano.2c05427
[10] Kim, J., Mayorga-Martinez, C. C. & Pumera, M. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nature Communications 14, 935 (2023). doi: 10.1038/s41467-023-36650-6
[11] Ma, Y. et al. Intrinsic Raman signal of polymer matrix induced quantitative multiphase SERS analysis based on stretched PDMS film with anchored Ag nanoparticles/Au nanowires. Chemical Engineering Journal 381, 122710 (2020). doi: 10.1016/j.cej.2019.122710
[12] Luo, J. L. et al. Photocurrent enhanced in UV-vis-NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo-phototronic effect. ACS Photonics 7, 1461-1467 (2020). doi: 10.1021/acsphotonics.0c00122
[13] Ghamgosar, P. et al. ZnO–Cu2O core–shell nanowires as stable and fast response photodetectors. Nano Energy 51, 308-316 (2018). doi: 10.1016/j.nanoen.2018.06.058
[14] Lin, B. Y. et al. MOF-derived core/shell C-TiO2/CoTiO3 type II heterojunction for efficient photocatalytic removal of antibiotics. Journal of Hazardous Materials 406 , 124675 (2021).
[15] Kim, C. et al. NiO/ZnO heterojunction nanorod catalyst for high-efficiency electrochemical conversion of methane. Applied Catalysis B: Environmental 323, 122129 (2023). doi: 10.1016/j.apcatb.2022.122129
[16] Sulaman, M. et al. Lead-free tin-based perovskites nanocrystals for high-performance self-driven bulk-heterojunction photodetectors. Materials Today Physics 27, 100829 (2022). doi: 10.1016/j.mtphys.2022.100829
[17] Zhou, X. B. et al. Electrically driven single microwire-based single-mode microlaser. Light: Science & Applications 11 , 198 (2022).
[18] Yang, W. et al. High-performance silicon-compatible large-area UV-to-Visible broadband photodetector based on integrated lattice-matched Type II Se/n-Si heterojunctions. Nano Letters 18, 4697-4703 (2018). doi: 10.1021/acs.nanolett.8b00988
[19] Ouyang, W. X. et al. Self-powered UV photodetectors based on ZnO nanomaterials. Applied Physics Reviews 8, 031315 (2021). doi: 10.1063/5.0058482
[20] Zhu, Y. et al. Photothermal-pyroelectric-plasmonic coupling for high performance and tunable band-selective photodetector. Nano Energy 83, 105801 (2021). doi: 10.1016/j.nanoen.2021.105801
[21] Zhong, S. et al. Structurally unraveling the photocarrier behavior of Cu2O/ZnO heterojunction photodetectors. ACS Photonics 9, 268-274 (2022).
[22] Saleem, M. I. et al. Suppression of Mid-Gap Trap State in CsPbBr3 Nanocrystals with Br-Passivation for Self-Powered Photodetector. Energy Technology 11, 2300013 (2023). doi: 10.1002/ente.202300013
[23] Sulaman, M. et al. Two bulk-heterojunctions made of blended hybrid nanocomposites for high-performance broadband, self-driven photodetectors. ACS Applied Materials & Interfaces 15, 25671-25683 (2023).
[24] Lv, Y. J. et al. Ag nanowires assisted CH3NH3PbBr3–ZnO heterostructure with fast negative photoconductive response. Applied Physics Letters 121, 061902 (2022). doi: 10.1063/5.0099006
[25] Ghamgosar, P. et al. Self-powered photodetectors based on core–shell ZnO-Co3O4 nanowire heterojunctions. ACS Applied Materials & Interfaces 11, 23454-23462 (2019).
[26] Fu, Q. M. et al. Highly sensitive ultraviolet photodetectors based on ZnO/SnO2 core-shell nanorod arrays. Applied Surface Science 527, 146923 (2020). doi: 10.1016/j.apsusc.2020.146923
[27] Kuang, D. et al. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays. Journal of Alloys and Compounds 860, 157917 (2021). doi: 10.1016/j.jallcom.2020.157917
[28] Qileng, A. et al. Portable dual‐modular immunosensor constructed from bimetallic metal–organic framework heterostructure grafted with enzyme‐mimicking label for rosiglitazone detection. Advanced Functional Materials 32, 2203244 (2022). doi: 10.1002/adfm.202203244
[29] Li, Y. P. et al. Sb2Se3/CdS/ZnO photodetectors based on physical vapor deposition for color imaging applications. Optics Letters 48, 2583-2586 (2023). doi: 10.1364/OL.487169
[30] Sarkar, S. & Basak, D. Self powered highly enhanced dual wavelength ZnO@CdS core–shell nanorod arrays photodetector: an intelligent pair. ACS Applied Materials & Interfaces 7, 16322-16329 (2015).
[31] You, D. T. et al. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays. Nano Energy 62, 310-318 (2019). doi: 10.1016/j.nanoen.2019.05.050
[32] You, D. T. et al. A core@dual-shell nanorod array with a cascading band configuration for enhanced photocatalytic properties and anti-photocorrosion. Journal of Materials Chemistry A 8, 3726-3734 (2020). doi: 10.1039/C9TA13028D
[33] Wang, X. W. et al. Piezo-phototronic enhanced photoresponsivity based on single CdTe nanowire photodetector. Journal of Applied Physics 125, 094505 (2019). doi: 10.1063/1.5067371
[34] Lian, Q. et al. Ultrahigh-detectivity photodetectors with Van der Waals epitaxial CdTe single-crystalline Films. Small 15, 1900236 (2019). doi: 10.1002/smll.201900236
[35] Eley, C. et al. Nanojunction-mediated photocatalytic enhancement in heterostructured CdS/ZnO, CdSe/ZnO, and CdTe/ZnO nanocrystals. Angewandte Chemie International Edition 53, 7838-7842 (2014). doi: 10.1002/anie.201404481
[36] Masood, H. T. et al. Low temperature ferromagnetic properties of CdS and CdTe thin films. Chinese Physics B 26, 067503 (2017). doi: 10.1088/1674-1056/26/6/067503
[37] Ou, G. et al. Tuning defects in oxides at room temperature by lithium reduction. Nature Communications 9, 1302 (2018). doi: 10.1038/s41467-018-03765-0
[38] Lei, J. et al. Oxygen vacancy-dependent chemiluminescence: a facile approach for quantifying oxygen defects in ZnO. Analytical Chemistry 94, 8642-8650 (2022). doi: 10.1021/acs.analchem.2c00359
[39] Mohanraj, K. et al. Impact of Ce content on cubic phase cerium–cadmium oxide (Ce–CdO) nanoparticles and its n-CeCdO/p-Si junction diodes. Journal of Materials Science: Materials in Electronics 29, 20439-20454 (2018). doi: 10.1007/s10854-018-0178-7
[40] Osial, M., Widera, J. & Jackowska, K. Influence of electrodeposition conditions on the properties of CdTe films. Journal of Solid State Electrochemistry 17, 2477-2486 (2013). doi: 10.1007/s10008-013-2125-0
[41] Yao, M. M. et al. Lead‐free halide CsAg2I3 with 1D electronic structure and high stability for ultraviolet photodetector. Advanced Functional Materials 32, 2202894 (2022). doi: 10.1002/adfm.202202894
[42] Chen, Y. C. et al. Ultra-sensitive flexible Ga2O3 solar-blind photodetector array realized via ultra-thin absorbing medium. Nano Research 15, 3711-3719 (2022). doi: 10.1007/s12274-021-3942-6
[43] Chen, Y. F. et al. Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics 4, 357-363 (2021). doi: 10.1038/s41928-021-00586-w
[44] Wang, F. et al. How to characterize figures of merit of two-dimensional photodetectors. Nature Communications 14, 2224 (2023). doi: 10.1038/s41467-023-37635-1
[45] Chen, J. P. et al. High-performance self-powered ultraviolet to near-infrared photodetector based on WS2/InSe van der Waals heterostructure. Nano Research 16, 7851-7857 (2023). doi: 10.1007/s12274-022-5323-1
[46] Li, Z. Q. et al. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nature Reviews Materials 8, 587-603 (2023). doi: 10.1038/s41578-023-00583-9
[47] Zeng, H. B. et al. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls. Advanced Functional Materials 20, 561-572 (2010). doi: 10.1002/adfm.200901884
[48] McCluskey, M. D. & Jokela, S. J. Defects in ZnO. Journal of Applied Physics 106, 071101 (2009). doi: 10.1063/1.3216464
[49] Wang, H. L. et al. Slowing hot-electron relaxation in mix-phase nanowires for hot-carrier photovoltaics. Nano Letters 21, 7761-7768 (2021). doi: 10.1021/acs.nanolett.1c02725