[1] |
Zhang, C. X. et al. Preflight evaluation of the performance of the chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Trans. Geosci. Remote Sens. 56, 3323-3332 (2018). doi: 10.1109/TGRS.2018.2798038 |
[2] |
Levelt, P. F. et al. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 44, 1093-1101 (2006). doi: 10.1109/TGRS.2006.872333 |
[3] |
Veefkind, J. P. et al. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70-83 (2012). doi: 10.1016/j.rse.2011.09.027 |
[4] |
Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063-2101 (2000). doi: 10.1016/S1352-2310(99)00460-4 |
[5] |
Liu, F. et al. Recent reduction in NOx emissions over China: synthesis of satellite observations and emission inventories. Environ. Res. Lett. 11, 114002 (2016). doi: 10.1088/1748-9326/11/11/114002 |
[6] |
Crippa, M. et al. Gridded emissions of air pollutants for the period 1970-2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987-2013 (2018). |
[7] |
An, Z. S. et al. Severe haze in northern China: a synergy of anthropogenic emissions and atmospheric processes. Proc. Natl Acad. Sci. USA 116, 8657-8666 (2019). doi: 10.1073/pnas.1900125116 |
[8] |
Gao, M. et al. Estimates of health impacts and radiative forcing in winter haze in eastern china through constraints of surface PM2.5 predictions. Environ. Sci. Technol. 51, 2178-2185 (2017). |
[9] |
Liu, F. et al. NOx emission trends over Chinese cities estimated from OMI observations during 2005 to 2015. Atmos. Chem. Phys. 17, 9261-9275 (2017). doi: 10.5194/acp-17-9261-2017 |
[10] |
Zhang, C. X. et al. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017. Light. Sci. Appl. 8, 100 (2019). doi: 10.1038/s41377-019-0210-6 |
[11] |
Liu, X. L. et al. Assimilation of satellite NO2 observations at high spatial resolution using OSSEs. Atmos. Chem. Phys. 17, 7067-7081 (2017). doi: 10.5194/acp-17-7067-2017 |
[12] |
Zhao, M. J. et al. Preflight calibration of the Chinese Environmental trace gases monitoring instrument (EMI). Atmos. Meas. Tech. 11, 5403-5419 (2018). doi: 10.5194/amt-11-5403-2018 |
[13] |
Platt, U. & Stutz, J. Differential Optical Absorption Spectroscopy, pp 135-174 (Springer, Berlin, Heidelberg, 2008). |
[14] |
Beirle, S. et al. The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO2 from nadir-viewing satellites by weighted convolution. Atmos. Meas. Tech. 9, 2753-2779 (2016). doi: 10.5194/amt-9-2753-2016 |
[15] |
Valks, P. et al. Operational total and tropospheric NO2 column retrieval for GOME-2. Atmos. Meas. Tech. 4, 1491-1514 (2011). doi: 10.5194/amt-4-1491-2011 |
[16] |
Palmer, P. I. et al. Air mass factor formulation for spectroscopic measurements from satellites: application to formaldehyde retrievals from the global ozone monitoring experiment. J. Geophys. Res. 106, 14539-14550 (2001). doi: 10.1029/2000JD900772 |
[17] |
Boersma, K. F. et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 11, 6651-6678 (2018). doi: 10.5194/amt-11-6651-2018 |
[18] |
Zhao, M. J. et al. Effect of AO/UV/RD exposure on spaceborne diffusers: a comparative experiment. Appl. Opt. 54, 9157-9166 (2015). doi: 10.1364/AO.54.009157 |
[19] |
Schenkeveld, V. M. E. et al. In-flight performance of the ozone monitoring instrument. Atmos. Meas. Tech. 10, 1957-1986 (2017). doi: 10.5194/amt-10-1957-2017 |
[20] |
Heath, D. F. et al. The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G. Optical Eng. 14, 144323 (1975). doi: 10.1117/12.7971839 |
[21] |
Anand, J. S., Monks, P. S. & Leigh, R. J. An improved retrieval of tropospheric NO2 from space over polluted regions using an Earth radiance reference. Atmos. Meas. Tech. 8, 1519-1535 (2015). doi: 10.5194/amt-8-1519-2015 |
[22] |
Chance, K. & Kurucz, R. L. An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared. J. Quant. Spectrosc. Radiat. Transf. 111, 1289-1295 (2010). doi: 10.1016/j.jqsrt.2010.01.036 |
[23] |
Griffin, D. et al. High-resolution mapping of nitrogen dioxide with TROPOMI: first results and validation over the canadian oil sands. Geophys. Res. Lett. 46, 1049-1060 (2019). doi: 10.1029/2018GL081095 |
[24] |
Chan, K. L. et al. Observations of tropospheric aerosols and NO2 in Hong Kong over 5 years using ground based MAX-DOAS. Sci. Total Environ. 619-620, 1545-1556 (2018). |
[25] |
Chan, K. L. et al. MAX-DOAS measurements of tropospheric NO2 and HCHO in Nanjing and a comparison to ozone monitoring instrument observations. Atmos. Chem. Phys. 19, 10051-10071 (2019). doi: 10.5194/acp-19-10051-2019 |
[26] |
Spurr, R. J. D. VLIDORT: a linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. J. Quant. Spectrosc. Radiat. Transf. 102, 316-342 (2006). doi: 10.1016/j.jqsrt.2006.05.005 |
[27] |
Kleipool, Q. L. et al. Earth surface reflectance climatology from 3 years of OMI data. J. Geophys. Res. 113, D18308 (2008). doi: 10.1029/2008JD010290 |
[28] |
Loyola, D. G. et al. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor. Atmos. Meas. Tech. 11, 409-427 (2018). doi: 10.5194/amt-11-409-2018 |
[29] |
Kuhlmann, G. et al. Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model. Atmos. Chem. Phys. 15, 5627-5644 (2015). doi: 10.5194/acp-15-5627-2015 |
[30] |
van den Oord, G. H. J. et al. OMI level 0 to 1b processing and operational aspects. IEEE Trans. Geosci. Remote Sens. 44, 1380-1397 (2006). doi: 10.1109/TGRS.2006.872935 |
[31] |
Dirksen, R. et al. Prelaunch characterization of the Ozone Monitoring Instrument transfer function in the spectral domain. Appl. Opt. 45, 3972-3981 (2006). doi: 10.1364/AO.45.003972 |
[32] |
Williams, J. E. et al. The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation. Geosci. Model Dev. 10, 721-750 (2017). doi: 10.5194/gmd-10-721-2017 |
[33] |
Wang, S. W. et al. Growth in NOx emissions from power plants in China: bottom-up estimates and satellite observations. Atmos. Chem. Phys. 12, 4429-4447 (2012). doi: 10.5194/acp-12-4429-2012 |
[34] |
Su, W. J. et al. Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou. Sci. Rep. 7, 17368 (2017). doi: 10.1038/s41598-017-17646-x |