[1] |
Ma, X. X. et al. A functionalized graphene oxide–iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Research 5, 199-212 (2012). doi: 10.1007/s12274-012-0200-y |
[2] |
Werfel, F. N. et al. Superconductor bearings, flywheels and transportation. Superconductor Science and Technology 25, 014007 (2012). doi: 10.1088/0953-2048/25/1/014007 |
[3] |
Levchenko, I. et al. Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nature Communications 9, 879 (2018). doi: 10.1038/s41467-017-02269-7 |
[4] |
Dey, T. K., Chattopadhyay, M. K. & Ghatak, S. K. Magnetic field sensor based on second harmonic response of polycrystalline YBCO pellets. Sensors and Actuators B:Chemical 55, 222-226 (1999). doi: 10.1016/S0925-4005(99)00089-1 |
[5] |
Muhammad, F. et al. Measurement of magnetic field components using a single passive SAW magnetic sensor. Sensors and Actuators A:Physical 352, 114163 (2023). doi: 10.1016/j.sna.2023.114163 |
[6] |
Niekiel, F. et al. Highly sensitive MEMS magnetic field sensors with integrated powder-based permanent magnets. Sensors and Actuators A:Physical 297, 111560 (2019). doi: 10.1016/j.sna.2019.111560 |
[7] |
Liu, H. et al. An overview of sensing platform-technological aspects for vector magnetic measurement: a case study of the application in different scenarios. Measurement 187, 110352 (2022). doi: 10.1016/j.measurement.2021.110352 |
[8] |
Li, Y. X. et al. All-fiber-optic vector magnetic field sensor based on side-polished fiber and magnetic fluid. Optics Express 27, 35182-35188 (2019). doi: 10.1364/OE.27.035182 |
[9] |
Pu, S. L. et al. Microfiber coupling structures for magnetic field sensing with enhanced sensitivity. IEEE Sensors Journal 17, 5857-5861 (2017). doi: 10.1109/JSEN.2017.2734908 |
[10] |
Liu, Q., Li, S. G. & Wang, X. Y. Sensing characteristics of a MF-filled photonic crystal fiber Sagnac interferometer for magnetic field detecting. Sensors and Actuators B:Chemical 242, 949-955 (2017). doi: 10.1016/j.snb.2016.09.160 |
[11] |
Yin, J. D. et al. All-fiber-optic vector magnetometer based on nano-magnetic fluids filled double-clad photonic crystal fiber. Sensors and Actuators B:Chemical 238, 518-524 (2017). doi: 10.1016/j.snb.2016.07.100 |
[12] |
Wang, J. et al. Magnetic field and temperature dual-parameter sensor based on magnetic fluid materials filled photonic crystal fiber. Optics Express 28, 1456-1471 (2020). doi: 10.1364/OE.377116 |
[13] |
Gu, S. F. et al. Highly sensitive magnetic field measurement with taper-based in-line Mach-Zehnder interferometer and Vernier effect. Journal of Lightwave Technology 40, 909-917 (2022). doi: 10.1109/JLT.2022.3141450 |
[14] |
Zhang, D. W. et al. Highly sensitive magnetic field microsensor based on direct laser writing of fiber-tip optofluidic Fabry–Pérot cavity. APL Photonics 5, 076112 (2020). doi: 10.1063/5.0012988 |
[15] |
Xiong, C. et al. Fiber-tip polymer microcantilever for fast and highly sensitive hydrogen measurement. ACS Applied Materials & Interfaces 12, 33163-33172 (2020). |
[16] |
Liao, C. R. et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing. Light:Advanced Manufacturing 3, 5 (2022). |
[17] |
Huang, H. Q. et al. Four-dimensional printing of a fiber-tip multimaterial microcantilever as a magnetic field sensor. ACS Photonics 10, 1916-1924 (2023). doi: 10.1021/acsphotonics.3c00347 |
[18] |
Wang, F. M. et al. Three-dimensional printed microcantilever with mechanical metamaterial for fiber-optic microforce sensing. APL Photonics 8, 096108 (2023). doi: 10.1063/5.0159706 |
[19] |
Zou, M. Q. et al. 3D printed fiber-optic nanomechanical bioprobe. International Journal of Extreme Manufacturing 5, 015005 (2023). |
[20] |
Zou, M. Q. et al. Fiber-tip polymer clamped-beam probe for high-sensitivity nanoforce measurements. Light:Science & Applications 10, 171 (2021). |
[21] |
Shen, Z. H. et al. Dual self-growing polymer microtips on a multicore fiber for humidity and temperature discriminative sensing. Journal of Lightwave Technology 41, 4322-4330 (2023). doi: 10.1109/JLT.2022.3166353 |
[22] |
Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications. 6th edn. (New York: Oxford University Press, 2006). |
[23] |
Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Separation and Purification Technology 172, 16-31 (2017). doi: 10.1016/j.seppur.2016.07.050 |
[24] |
Crangle, J. & Goodman, G. M. The magnetization of pure iron and nickel. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences 321, 477-491 (1971). |
[25] |
Li, Q. et al. Softening hard stool using magnetically controlled Fe3O4 nanoparticles. Sensors and Materials 29, 1749-1761 (2017). |
[26] |
Li, M. et al. Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity. Sensors and Actuators B:Chemical 233, 496-501 (2016). doi: 10.1016/j.snb.2016.04.121 |
[27] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121 |
[28] |
Li, B. Z. et al. Femtosecond laser 3D printed micro objective lens for ultrathin fiber endoscope. Fundamental Research 4, 123-130 (2024). doi: 10.1016/j.fmre.2022.05.026 |
[29] |
Woods, L. M. et al. Materials perspective on Casimir and van der Waals interactions. Reviews of Modern Physics 88, 045003 (2016). doi: 10.1103/RevModPhys.88.045003 |
[30] |
Ji, W. et al. Spacing-tailored multicore fiber interface for efficient FIFO devices. Journal of Lightwave Technology 40, 5682-5688 (2022). doi: 10.1109/JLT.2022.3177622 |
[31] |
Ma, J. et al. High-sensitivity and fast-response fiber-tip Fabry–Pérot hydrogen sensor with suspended palladium-decorated graphene. Nanoscale 11, 15821-15827 (2019). doi: 10.1039/C9NR04274A |
[32] |
Li, W. B. et al. Determination of the temperature and concentration dependence of the refractive index of a liquid mixture. The Journal of Chemical Physics 101, 5058-5069 (1994). doi: 10.1063/1.467428 |
[33] |
Xia, J. et al. A magnetic field sensor based on a magnetic fluid-filled FP-FBG structure. Sensors 16, 620 (2016). |
[34] |
Li, X. G. et al. Measurement of magnetic field and temperature based on fiber-optic composite interferometer. IEEE Transactions on Instrumentation and Measurement 66, 1906-1911 (2017). doi: 10.1109/TIM.2017.2670067 |
[35] |
Zhang, R. et al. Mach-Zehnder interferometer cascaded with FBG for simultaneous measurement of magnetic field and temperature. IEEE Sensors Journal 19, 4079-4083 (2019). |
[36] |
Liu, H. F. et al. Ultra-sensitive magnetic field sensor with resolved temperature cross-sensitivity employing microfiber-assisted modal interferometer integrated with magnetic fluids. Applied Physics Letters 109, 042402 (2016). doi: 10.1063/1.4959838 |
[37] |
Li, X. G. et al. Multi-modes interferometer for magnetic field and temperature measurement using Photonic crystal fiber filled with magnetic fluid. Optical Fiber Technology 41, 1-6 (2018). doi: 10.1016/j.yofte.2017.12.002 |