[1] Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713
[2] Capasso, F. The future and promise of flat optics: a personal perspective. Nanophotonics 7, 953-957 (2018). doi: 10.1515/nanoph-2018-0004
[3] Li, A., Singh, S. & Sievenpiper, D. Metasurfaces and their applications. Nanophotonics 7, 989-1011 (2018). doi: 10.1515/nanoph-2017-0120
[4] Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644
[5] Khorasaninejad, M. et al. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 16, 7229-7234 (2016). doi: 10.1021/acs.nanolett.6b03626
[6] Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6
[7] Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4
[8] Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light: Sci. Appl. 7, 85 (2018). doi: 10.1038/s41377-018-0078-x
[9] Wu, P. C. et al. Versatile polarization generation with an aluminum plasmonic metasurface. Nano Lett. 17, 445-452 (2017). doi: 10.1021/acs.nanolett.6b04446
[10] Wang, B. et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett. 16, 5235-5240 (2016). doi: 10.1021/acs.nanolett.6b02326
[11] Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312 (2015). doi: 10.1038/nnano.2015.2
[12] Huang, L. L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013). doi: 10.1038/ncomms3808
[13] Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101-1104 (2018). doi: 10.1126/science.aat9042
[14] Devlin, R. C. et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896-901 (2017). doi: 10.1126/science.aao5392
[15] Mehmood, M. Q. et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices. Adv. Mater. 28, 2533-2539 (2016). doi: 10.1002/adma.201504532
[16] Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016). doi: 10.1126/sciadv.1601102
[17] Wen, D. D. et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 6, 8241 (2015). doi: 10.1038/ncomms9241
[18] Dong, F. L. et al. Information encoding with optical dielectric metasurface via independent multichannels. ACS Photon. 6, 230-237 (2019). doi: 10.1021/acsphotonics.8b01513
[19] Wan, W. W., Gao, J. & Yang, X. D. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671-10680 (2016). doi: 10.1021/acsnano.6b05453
[20] Huang, Y. W. et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 15, 3122-3127 (2015). doi: 10.1021/acs.nanolett.5b00184
[21] Jin, L. et al. Noninterleaved metasurface for (26-1) spin- and wavelength-encoded holograms. Nano Lett. 18, 8016-8024 (2018). doi: 10.1021/acs.nanolett.8b04246
[22] Zhou, Y. et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett. 18, 7529-7537 (2018). doi: 10.1021/acs.nanolett.8b03017
[23] Avayu, O. et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun. 8, 14992 (2017). doi: 10.1038/ncomms14992
[24] Groever, B., Chen, W. T. & Capasso, F. Meta-lens doublet in the visible region. Nano Lett. 17, 4902-4907 (2017). doi: 10.1021/acs.nanolett.7b01888
[25] Arbabi, A. et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun. 7, 13682 (2016). doi: 10.1038/ncomms13682
[26] Arbabi, A. et al. Planar metasurface retroreflector. Nat. Photon. 11, 415-420 (2017). doi: 10.1038/nphoton.2017.96
[27] Lim, K. T. P. et al. Holographic colour prints for enhanced optical security by combined phase and amplitude control. Nat. Commun. 10, 25 (2019). doi: 10.1038/s41467-018-07808-4
[28] Wang, Y. S. et al. Stepwise-nanocavity-assisted transmissive color filter array microprints. Research 2018, 8109054 (2018).
[29] Yang, Z. M. et al. Microscopic interference full‐color printing using grayscale‐patterned Fabry-Perot resonance cavities. Adv. Opt. Mater. 5, 1700029 (2017). doi: 10.1002/adom.201700029
[30] Chen, Y. Q. et al. Dynamic color displays using stepwise cavity resonators. Nano Lett. 17, 5555-5560 (2017). doi: 10.1021/acs.nanolett.7b02336
[31] Macleod, H. A. Thin-Film Optical Filters. 4th edn (CRC Press, Boca Raton, FL, 2010).