[1] Zhang, L. , Liang, Y. C. & Niyato, D. 6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence. China Communications 16, 1-14 (2019).
[2] Wang, Y. T. & Zhao, J. Mobile edge computing, metaverse, 6G wireless communications, artificial intelligence, and Blockchain: survey and their convergence. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). Yokohama: IEEE, 2022, 1-8 doi: 10.1109/WF-IoT54382.2022.10152245. doi: 10.1109/WF-IoT54382.2022.10152245
[3] Pahlavan, K. & Krishnamurthy, P. Evolution and impact of Wi-Fi technology and applications: a historical perspective. International Journal of Wireless Information Networks 28, 3-19 (2021). doi: 10.1007/s10776-020-00501-8
[4] Nguyen, T. et al. Current status and performance analysis of optical camera communication technologies for 5G networks. IEEE Access 5, 4574-4594 (2017). doi: 10.1109/ACCESS.2017.2681110
[5] Lam, C. F. et al. Fiber optic communication technologies: What’s needed for datacenter network operations. IEEE Communications Magazine 48, 32-39 (2010).
[6] Liu, X. & Deng, N. Chapter 17 - Emerging optical communication technologies for 5G. in Optical Fiber Telecommunications VII (ed Willner, A. E. ) (Amsterdam: Elsevier, 2019), 751-783.
[7] Brackett, C. A. Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on Selected Areas in Communications 8, 948-964 (1990). doi: 10.1109/49.57798
[8] Park, S. J. et al. Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network. Journal of Lightwave Technology 22, 2582-2591 (2004).
[9] Elsayed, E. E. et al. Design and analysis of a dense wavelength-division multiplexed integrated PON-FSO system using modified OOK/DPPM modulation schemes over atmospheric turbulences. Optical and Quantum Electronics 54, 768 (2022). doi: 10.1007/s11082-022-04142-4
[10] Elsayed, E. E., Yousif, B. B. & Singh, M. Performance enhancement of hybrid fiber wavelength division multiplexing passive optical network FSO systems using M-ary DPPM techniques under interchannel crosstalk and atmospheric turbulence. Optical and Quantum Electronics 54, 116 (2022). doi: 10.1007/s11082-021-03485-8
[11] Elsayed, E. E. & Yousif, B. B. Performance enhancement of M-ary pulse-position modulation for a wavelength division multiplexing free-space optical systems impaired by interchannel crosstalk, pointing error, and ASE noise. Optics Communications 475, 126219 (2020). doi: 10.1016/j.optcom.2020.126219
[12] Arik, S. O. , Kahn, J. M. & Ho, K. P. MIMO signal processing for mode-division multiplexing: an overview of channel models and signal processing architectures. IEEE Signal Processing Magazine 31, 25-34 (2014).
[13] Sillard, P., Bigot-Astruc, M. & Molin, D. Few-mode fibers for mode-division-multiplexed systems. Journal of Lightwave Technology 32, 2824-2829 (2014). doi: 10.1109/JLT.2014.2312845
[14] Su, Y. K. et al. Perspective on mode-division multiplexing. Applied Physics Letters 118, 200502 (2021). doi: 10.1063/5.0046071
[15] Berdagué, S. & Facq, P. Mode division multiplexing in optical fibers. Applied Optics 21, 1950-1955 (1982). doi: 10.1364/AO.21.001950
[16] Ivanovich, D. et al. Polarization division multiplexing for optical data communications. Proceedings of SPIE 10538, Optical Interconnects XVIII. San Francisco: SPIE, 2018, 160-178.
[17] Liu, X., Buchali, F. & Tkach, R. W. Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission. Journal of Lightwave Technology 27, 3632-3640 (2009). doi: 10.1109/JLT.2009.2022767
[18] Wang, Y. Q. et al. Gigabit polarization division multiplexing in visible light communication. Optics Letters 39, 1823-1826 (2014). doi: 10.1364/OL.39.001823
[19] Chen, Z. Y. et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission. Light: Science & Applications 6, e16207 (2017).
[20] Kawanishi, S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE Journal of Quantum Electronics 34, 2064-2079 (1998). doi: 10.1109/3.726595
[21] Spirit, D. M., Ellis, A. D. & Barnsley, P. E. Optical time division multiplexing: systems and networks. IEEE Communications Magazine 32, 56-62 (1994).
[22] Tucker, R. S., Eisenstein, G. & Korotky, S. K. Optical time-division multiplexing for very high bit-rate transmission. Journal of Lightwave Technology 6, 1737-1749 (1988). doi: 10.1109/50.9991
[23] Fareed, A. et al. Comparison of Laguerre-Gaussian, Hermite–Gaussian and linearly polarized modes in SDM over FMF with electrical nonlinear equalizer. AIP Conference Proceedings 2203, 020045 (2020).
[24] VanWiggeren, G. D. & Roy, R. Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence. Applied Optics 38, 3888-3892 (1999). doi: 10.1364/AO.38.003888
[25] Wang, X. W. et al. Recent advances on optical vortex generation. Nanophotonics 7, 1533-1556 (2018).
[26] Willner, A. E. et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics 7, 66-106 (2015).
[27] Wang, J. Advances in communications using optical vortices. Photonics Research 4, B14-B28 (2016). doi: 10.1364/PRJ.4.000B14
[28] Ndagano, B. et al. Fiber propagation of vector modes. Optics Express 23, 17330-17336 (2015). doi: 10.1364/OE.23.017330
[29] Milione, G. et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer. Optics Letters 40, 1980-1983 (2015).
[30] Milione, G. et al. Using the nonseparability of vector beams to encode information for optical communication. Optics Letters 40, 4887-4890 (2015). doi: 10.1364/OL.40.004887
[31] Franke-Arnold, S., Allen, L. & Padgett, M. Advances in optical angular momentum. Laser & Photonics Reviews 2, 299-313 (2008).
[32] Zhang, H. W. et al. Generation of orbital angular momentum modes using fiber systems. Applied Sciences 9, 1033 (2019).
[33] Qiao, Z. et al. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX 1, 13 (2020).
[34] Li, S. H. et al. Atmospheric turbulence compensation in orbital angular momentum communications: advances and perspectives. Optics Communications 408, 68-81 (2018). doi: 10.1016/j.optcom.2017.09.034
[35] Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6, 488-496 (2012).
[36] Yousif, B. B. & Elsayed, E. E. Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization. IEEE Access 7, 84401-84412 (2019). doi: 10.1109/ACCESS.2019.2924531
[37] Wang, A. D. et al. Directly using 8.8-km conventional multi-mode fiber for 6-mode orbital angular momentum multiplexing transmission. Optics Express 26, 10038-10047 (2018).
[38] Li, S. H. & Wang, J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing. IEEE Photonics Journal 5, 7101007 (2013). doi: 10.1109/JPHOT.2013.2272778
[39] Zhu, L. et al. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Optics Express 25, 25637-25645 (2017).
[40] Wu, X. W. et al. Multiple orbital angular momentum mode switching at multi-wavelength in few-mode fibers. Optics Express 28, 36084-36094 (2020).
[41] Gao, S. C. et al. OAM-labeled free-space optical flow routing. Optics Express 24, 21642-21651 (2016).
[42] Yue, Y. et al. Reconfigurable switching of orbital-angular-momentum-based free-space data channels. Optics Letters 38, 5118-5121 (2013).
[43] Nagarajan, R. et al. Large-scale photonic integrated circuits. IEEE Journal of Selected Topics in Quantum Electronics 11, 50-65 (2005).
[44] Wang, J. & Long, Y. On-chip silicon photonic signaling and processing: a review. Science Bulletin 63, 1267-1310 (2018). doi: 10.1016/j.scib.2018.05.038
[45] Lee, B. G. & Dupuis, N. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology 37, 6-20 (2019). doi: 10.1109/JLT.2018.2876828
[46] Pérez, D. et al. Principles, fundamentals, and applications of programmable integrated photonics. Advances in Optics and Photonics 12, 709-786 (2020). doi: 10.1364/AOP.387155
[47] Chen, X. J., Lin, J. & Wang, K. A review of silicon-based integrated optical switches. Laser & Photonics Reviews 17, 2200571 (2023).
[48] Dai, T. G. et al. Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators. Optics Letters 41, 4807-4810 (2016).
[49] Sherwood-Droz, N. et al. Optical 4x4 hitless Silicon router for optical Networks-on-Chip (NoC): erratum. Optics Express 16, 19395 (2008).
[50] Cao, X. P. et al. Mesh-structure-enabled programmable multitask photonic signal processor on a silicon chip. ACS Photonics 7, 2658-2675 (2020).
[51] Lu, L. J. et al. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express 24, 9295-9307 (2016).
[52] Chen, X. J. , Lin, J. & Wang, K. A review of silicon-based integrated optical switches. Laser & Photonics Reviews 17, 2200571 (2023).
[53] Chu, T. et al. Large-scale high-speed photonic switches fabricated on silicon-based photonic platforms. Optical Fiber Communication Conference and Exhibition. San Diego: Optica Publishing Group, 2023 doi: 10.23919/OFC49934.2023.10116152. doi: 10.23919/OFC49934.2023.10116152
[54] Seok, T. J. et al. Wafer-scale silicon photonic switches beyond die size limit. Optica 6, 490 (2019). doi: 10.1364/OPTICA.6.000490
[55] Kwon, K. et al. 128×128 silicon photonic MEMS switch with scalable row/column addressing. Conference on Lasers and Electro-Optics. San Jose: IEEE, 2018.
[56] Seok, T. J. et al. 64×64 Low-loss and broadband digital silicon photonic MEMS switches. 2015 European Conference on Optical Communication (ECOC). Valencia: IEEE, 2015, 1-3 doi: 10.1109/ECOC.2015.7341906. doi: 10.1109/ECOC.2015.7341906
[57] Jiang, J. Q., Chen, M. K. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nature Reviews Materials 6, 679-700 (2021).
[58] Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39-47 (2020).
[59] Liu, J. et al. Research progress in optical neural networks: theory, applications and developments. PhotoniX 2, 5 (2021).
[60] Clements, W. R. et al. Optimal design for universal multiport interferometers. Optica 3, 1460-1465 (2016). doi: 10.1364/OPTICA.3.001460
[61] Reck, M. et al. Experimental realization of any discrete unitary operator. Physical Review Letters 73, 58-61 (1994). doi: 10.1103/PhysRevLett.73.58
[62] Tait, A. N. et al. Microring Weight Banks. IEEE Journal of Selected Topics in Quantum Electronics 22, 312-325 (2016).
[63] Tang, R., Tanemura, T. & Nakano, Y. Integrated reconfigurable unitary optical mode converter using MMI couplers. IEEE Photonics Technology Letters 29, 971-974 (2017). doi: 10.1109/LPT.2017.2700619
[64] Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits. Nature Photonics 11, 441-446 (2017).
[65] Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic weight banks. Scientific Reports 7, 7430 (2017).
[66] Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52-58 (2021).
[67] Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501-506 (2022). doi: 10.1038/s41586-022-04714-0
[68] Zhang, H. et al. An optical neural chip for implementing complex-valued neural network. Nature Communications 12, 457 (2021).
[69] Annoni, A. et al. Unscrambling light—automatically undoing strong mixing between modes. Light: Science & Applications 6, e17110 (2017).
[70] Zhou, H. L. et al. Self-Configuring and Reconfigurable Silicon Photonic Signal Processor. ACS Photonics 7, 792-799 (2020).
[71] Tanomura, R. et al. Monolithic InP optical unitary converter based on multi-plane light conversion. Optics Express 28, 25392-25399 (2020).
[72] Tang, R. et a. Reconfigurable all-optical on-chip MIMO three-mode demultiplexing based on multi-plane light conversion. Optics Letters 43, 1798-1801 (2018).