[1] Pust, P., Schmidt, P. J. & Schnick, W. A revolution in lighting. Nat. Mater. 14, 454-458 (2015). doi: 10.1038/nmat4270
[2] Pimputkar, S. et al. Prospects for LED lighting. Nat. Photonics 3, 180-182 (2009). doi: 10.1038/nphoton.2009.32
[3] Schubert, E. F. & Kim, J. K. Solid-state light sources getting smart. Science 308, 1274-1278 (2005). doi: 10.1126/science.1108712
[4] Xia, Z. G. & Liu, Q. L. Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. 84, 59-117 (2016). doi: 10.1016/j.pmatsci.2016.09.007
[5] Kim, Y. H. et al. A zero-thermal-quenching phosphor. Nat. Mater. 16, 543-550 (2017). doi: 10.1038/nmat4843
[6] Pust, P. et al. Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat. Mater. 13, 891-896 (2014). doi: 10.1038/nmat4012
[7] Zhao, M. et al. Next-generation narrow-band green-emitting RbLi(Li3SiO4)2: Eu2+ phosphor for backlight display application. Adv. Mater. 30, 1802489 (2018). doi: 10.1002/adma.201802489
[8] Wierer, J. J. Jr, Tsao, J. Y. & Sizov, D. S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser Photonics Rev. 7, 963-993 (2013). doi: 10.1002/lpor.201300048
[9] Cho, J., Schubert, E. F. & Kim, J. K. Efficiency droop in light-emitting diodes: challenges and countermeasures. Laser Photonics Rev. 7, 408-421 (2013). doi: 10.1002/lpor.201200025
[10] Lenef, A. et al. Phosphor performance under high intensity excitation by InGaN laser diodes. ECS J. Solid State Sci. Technol. 9, 016019 (2019). doi: 10.1149/2.0352001JSS
[11] Li, S. X. et al. Color conversion materials for high-brightness laser-driven solid-state lighting. Laser Photonics Rev. 12, 1800173 (2018). doi: 10.1002/lpor.201800173
[12] Huang, J. L. et al. Rapid degradation of mid-power white-light LEDs in saturated moisture conditions. IEEE Trans. Device Mater. Reliab. 15, 478-485 (2015). doi: 10.1109/TDMR.2015.2468587
[13] Lin, H. et al. Glass ceramic phosphors: towards long-lifetime high-power white light-emitting-diode applications-a review. Laser Photonics Rev. 12, 1700344 (2018). doi: 10.1002/lpor.201700344
[14] Arjoca, S. et al. Temperature dependence of Ce: YAG single-crystal phosphors for high-brightness white LEDs/LDs. Mater. Res. Express 2, 055503 (2015). doi: 10.1088/2053-1591/2/5/055503
[15] Yao, Q. et al. YAG: Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv. Mater. 32, 1907888 (2020). doi: 10.1002/adma.201907888
[16] Zhang, R. et al. A new-generation color converter for high-power white LED: transparent Ce3+: YAG phosphor-in-glass. Laser Photonics Rev. 8, 158-164 (2014). doi: 10.1002/lpor.201300140
[17] Zhang, D. et al. Highly efficient phosphor-glass composites by pressureless sintering. Nat. Commun. 11, 2805 (2020). doi: 10.1038/s41467-020-16649-z
[18] Huang, P. et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Adv. Mater. 32, 1905951 (2020). doi: 10.1002/adma.201905951
[19] Hoerder, G. J. et al. Sr[Li2Al2O2N2]: Eu2+-A high performance red phosphor to brighten the future. Nat. Commun. 10, 1824 (2019). doi: 10.1038/s41467-019-09632-w
[20] Qiao, J. W. et al. Site-selective occupancy of Eu2+ toward blue-light-excited red emission in a Rb3YSi2O7: Eu phosphor. Angew. Chem. Int. Ed. 58, 11521-11526 (2019). doi: 10.1002/anie.201905787
[21] Wang, R. et al. Red-emitting improvement of CaAlSiN3: Eu2+ phosphor-in-glass: insight into the effect of atmospheric pressure preparation on photoluminescence properties and thermal degradation. J. Lumin. 225, 117390 (2020). doi: 10.1016/j.jlumin.2020.117390
[22] Li, S. X. et al. New insights into the microstructure of translucent CaAlSiN3: Eu2+ phosphor ceramics for solid-state laser lighting. J. Mater. Chem. C 4, 1042-1051 (2017). doi: 10.1039/C6TC04987G
[23] Allix, M. et al. Highly transparent BaAl4O7 polycrystalline ceramic obtained by full crystallization from glass. Adv. Mater. 24, 5570-5575 (2012). doi: 10.1002/adma.201202282
[24] Alahraché, S. et al. Crystallization of Y2O3-Al2O3 rich glasses: synthesis of YAG glass-ceramics. J. Phys. Chem. C. 115, 20499-20506 (2011). doi: 10.1021/jp207516w
[25] Ma, X. G. et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics. Nat. Commun. 9, 1175 (2018). doi: 10.1038/s41467-018-03467-7
[26] Zhou, S. F. et al. Simultaneous tailoring of phase evolution and dopant distribution in the glassy phase for controllable luminescence. J. Am. Chem. Soc. 132, 17945-17952 (2010). doi: 10.1021/ja108512g
[27] Chen, D. Q. et al. Simultaneous tailoring of dual-phase fluoride precipitation and dopant distribution in glass to control upconverting luminescence. ACS Appl. Mater. Interfaces 11, 30053-30064 (2019). doi: 10.1021/acsami.9b11516
[28] Chowdhury, A. et al. Synthesis, properties and applications of cordierite ceramics, Part 1. Int. Ceram. Rev. 56, 18-22 (2007). http://www.researchgate.net/publication/270448462_Synthesis_properties_and_applications_of_cordierite_ceramics
[29] Chen, J. et al. The luminescence properties of novel α-Mg2Al4Si5O18: Eu2+ phosphor prepared in air. RSC Adv. 4, 18234-18239 (2014). doi: 10.1039/C4RA00452C
[30] Zhou, J. et al. New insight into phase formation of MxMg2Al4 + xSi5 - xO18: Eu2+ solid solution phosphors and its luminescence properties. Sci. Rep. 5, 12149 (2015). doi: 10.1038/srep12149
[31] Song, K. et al. Synthesis and luminescence characteristics of Mg2Al4Si5O18: Eu2+ and nitrided Mg2Al4Si5O18: Eu2+ phosphors. J. Lumin. 224, 117317 (2020). doi: 10.1016/j.jlumin.2020.117317
[32] Stefańska, D. & Dereń, P. J. High efficiency emission of Eu2+ located in channel and Mg-site of Mg2Al4Si5O18 cordierite and its potential as a Bi-functional phosphor toward optical thermometer and white LED application. Adv. Optical Mater. 8, 2001143 (2020). doi: 10.1002/adom.202001143
[33] Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 428, 156-175 (2015). doi: 10.1016/j.jnoncrysol.2015.08.017
[34] Höland, W. & Beall, G. H. Glass-Ceramic Technology 2nd edn (Wiley, 2012).
[35] Bruker, A. X. S. TOPAS, V4: General Profile and Structure Analysis Software for Powder Diffraction Data-User's Manual (Bruker AXS, 2008).
[36] Clayden, N. J. et al. Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses. J. Non-Cryst. Solids 258, 11-19 (1999). doi: 10.1016/S0022-3093(99)00555-4
[37] Mozgawa, W. & Sitarz, M. Vibrational spectra of aluminosilicate ring structures. J. Mol. Struct. 614, 273-279 (2002). doi: 10.1016/S0022-2860(02)00261-2
[38] Hume-Rothery, W. & Powell, H. M. On the theory of super-lattice structures in alloys. Z. f. ür. Kristallographie 91, 23-47 (1935). doi: 10.1524/zkri.1935.91.1.23/html
[39] Thomas, P. et al. Powder neutron diffraction study of alkali-substituted cordierites with MxMg2A14+xSi5-xO18 (M = K, Cs; 0 < x ≤ 1) formula. Eur. J. Solid State Inorg. Chem. 28, 1011-1120 (1991).
[40] Grau-Crespo, R. et al. Symmetry-adapted configurational modelling of fractional site occupancy in solids. J. Phys. Condens. Matter 19, 256201 (2007). doi: 10.1088/0953-8984/19/25/256201
[41] Poort, S. H. M., Meyerink, A. & Blasse, G. Lifetime measurements in Eu2+-doped host lattices. J. Phys. Chem. Solids 58, 1451-1456 (1997). doi: 10.1016/S0022-3697(97)00010-3
[42] Dorenbos, P. Thermal quenching of Eu2+ 5d-4f luminescence in inorganic compounds. J. Phys. Condens. Matter 17, 8103 (2005). doi: 10.1088/0953-8984/17/50/027
[43] Qiao, J. W. et al. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence. J. Am. Chem. Soc. 140, 9730-9736 (2018). doi: 10.1021/jacs.8b06021
[44] Dorenbos, P. Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J. Phys. Condens. Matter 15, 2645 (2003). doi: 10.1088/0953-8984/15/17/318
[45] Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865-3868 (1996). doi: 10.1103/PhysRevLett.77.3865
[46] Canning, A. et al. First-principles study of luminescence in Ce-doped inorganic scintillators. Phys. Rev. B 83, 125115 (2011). doi: 10.1103/PhysRevB.83.125115
[47] Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505-1509 (1998). doi: 10.1103/PhysRevB.57.1505
[48] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169-11186 (1996). doi: 10.1103/PhysRevB.54.11169
[49] Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758-1775 (1999). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000059000003001758000001&idtype=cvips&gifs=Yes
[50] Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994). doi: 10.1103/PhysRevB.50.17953