[1] |
Dhawan, A. P., D’Alessandro, B. & Fu, X. L. Optical imaging modalities for biomedical applications. IEEE Reviews in Biomedical Engineering 3, 69-92 (2010). doi: 10.1109/RBME.2010.2081975 |
[2] |
Keiser, G. et al. Review of diverse optical fibers used in biomedical research and clinical practice. Journal of Biomedical Optics 19, 080902 (2014). doi: 10.1117/1.JBO.19.8.080902 |
[3] |
Kotnala, A. et al. Microfluidic-based high-throughput optical trapping of nanoparticles. Lab on a Chip 17, 2125-2134 (2017). doi: 10.1039/C7LC00286F |
[4] |
Heuer, C. et al. 3D printing in biotechnology- an insight into miniaturized and microfluidic systems for applications from cell culture to bioanalytics. Engineering in Life Sciences 22, 744-759 (2022). doi: 10.1002/elsc.202100081 |
[5] |
Yang, Z. Y. et al. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722 |
[6] |
Gonzalez-Hernandez, D. et al. Micro-optics 3D printed via multi-photon laser lithography. Advanced Optical Materials 11, 2201701 (2023). doi: 10.1002/adom.202201701 |
[7] |
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics 10, 554-560 (2016). doi: 10.1038/nphoton.2016.121 |
[8] |
Toulouse, A. et al. 3D-printed miniature spectrometer for the visible range with a 100×100 μm2 footprint. Light: Advanced Manufacturing 2, 20-30 (2021). doi: 10.37188/lam.2021.002 |
[9] |
Malinauskas, M. et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. Journal of Optics 12, 124010 (2010). doi: 10.1088/2040-8978/12/12/124010 |
[10] |
Kampmann, R., Sinzinger, S. & Korvink, J. G. Optical tweezers for trapping in a microfluidic environment. Applied Optics 57, 5733-5742 (2018). doi: 10.1364/AO.57.005733 |
[11] |
Pallaoro, A. et al. Rapid identification by surface-enhanced raman spectroscopy of cancer cells at low concentrations flowing in a microfluidic channel. ACS Nano 9, 4328-4336 (2015). doi: 10.1021/acsnano.5b00750 |
[12] |
Kong, K. et al. Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Advanced Drug Delivery Reviews 89, 121-134 (2015). doi: 10.1016/j.addr.2015.03.009 |
[13] |
Cordero, E. et al. In-vivo raman spectroscopy: from basics to applications. Journal of Biomedical Optics 23, 071210 (2018). |
[14] |
Kim, S. A., Heinze, K. G. & Schwille, P. Fluorescence correlation spectroscopy in living cells. Nature Methods 4, 963-973 (2007). doi: 10.1038/nmeth1104 |
[15] |
Yu, L. et al. A comprehensive review of fluorescence correlation spectroscopy. Frontiers in Physics 9, 644450 (2021). doi: 10.3389/fphy.2021.644450 |
[16] |
Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE 97, 1166-1185 (2009). doi: 10.1109/JPROC.2009.2014298 |
[17] |
Lindenmann, N. et al. Photonic wire bonding: a novel concept for chip-scale interconnects. Optics express 20, 17667-17677 (2012). doi: 10.1364/OE.20.017667 |
[18] |
Lindenmann, N. et al. Connecting silicon photonic circuits to multicore fibers by photonic wire bonding. Journal of lightwave Technology 33, 755-760 (2015). doi: 10.1109/JLT.2014.2373051 |
[19] |
Marchetti, R. et al. Coupling strategies for silicon photonics integrated chips[Invited]. Photonics Research 7, 201-239 (2019). doi: 10.1364/PRJ.7.000201 |
[20] |
Mu, X. et al. Edge couplers in silicon photonic integrated circuits: A review. Applied Sciences 10, 1538 (2020). doi: 10.3390/app10041538 |
[21] |
Dietrich, P. I. et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photonics 12, 241-247 (2018). doi: 10.1038/s41566-018-0133-4 |
[22] |
Trappen, M. et alaa. 3D-printed optical probes for wafer-level testing of photonic integrated circuits. Optics Express 28, 37996-38007 (2020). doi: 10.1364/OE.405139 |
[23] |
Bremer, L. et al. Quantum dot single-photon emission coupled into single-mode fibers with 3D printed micro-objectives. APL Photonics 5, 106101 (2020). doi: 10.1063/5.0014921 |
[24] |
Sartison, M. et al. 3D printed micro-optics for quantum technology: Optimised coupling of single quantum dot emission into a single-mode fibre. Light: Advanced Manufacturing 2, 103-119 (2021). doi: 10.37188/lam.2021.006 |
[25] |
Plidschun, M. et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping. Light: Science & Applications 10, 57 (2021). |
[26] |
Asadollahbaik, A. et al. Fresnel lens optical fiber tweezers to evaluate the vitality of single algae cells. Optics Letters 47, 170-173 (2022). doi: 10.1364/OL.447683 |
[27] |
Asadollahbaik, A. et al. Highly efficient dual-fiber optical trapping with 3D printed diffractive fresnel lenses. ACS Photonics 7, 88-97 (2020). |
[28] |
Varapnickas, S. et al. Birefringent optical retarders from laser 3D-printed dielectric metasurfaces. Applied Physics Letters 118, 151104 (2021). doi: 10.1063/5.0046978 |
[29] |
Vanmol, K. et al. Fabrication of multilevel metalenses using multiphoton lithography: from design to evaluation. Optics Express 32, 10190-10203 (2024). doi: 10.1364/OE.514237 |
[30] |
Noponen, E., Turunen, J. & Vasara, A. Electromagnetic theory and design of diffractive-lens arrays. Journal of the Optical Society of America A 10, 434-443 (1993). doi: 10.1364/JOSAA.10.000434 |
[31] |
Wende, M. et al. Fast algorithm for the simulation of 3D-printed microoptics based on the vector wave propagation method. Optics Express 30, 40161-40173 (2022). doi: 10.1364/OE.469178 |
[32] |
Ovsianikov, A. et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257-2262 (2008). doi: 10.1021/nn800451w |
[33] |
KayakuAM. SU-8 photoresist. (2024). at https://kayakuam.com/products/su-8-photoresists/ URL. |
[34] |
Malinauskas, M. et al. 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing. Optics and Lasers in Engineering 50, 1785-1788 (2012). doi: 10.1016/j.optlaseng.2012.07.001 |
[35] |
Gissibl, T. et al. Refractive index measurements of photo-resists for three-dimensional direct laser writing. Optical Materials Express 7, 2293-2298 (2017). doi: 10.1364/OME.7.002293 |
[36] |
Schmid, M., Ludescher, D. & Giessen, H. Optical properties of photoresists for femtosecond 3D printing: refractive index, extinction, luminescence-dose dependence, aging, heat treatment and comparison between 1-photon and 2-photon exposure. Optical Materials Express 9, 4564-4577 (2019). doi: 10.1364/OME.9.004564 |
[37] |
Weber, K. et al. Tailored nanocomposites for 3D printed micro-optics. Optical Materials Express 10, 2345-2355 (2020). doi: 10.1364/OME.399392 |
[38] |
Lü, C. L. & Yang, B. High refractive index organic–inorganic nanocomposites: design, synthesis and application. Journal of Materials Chemistry 19, 2884-2901 (2009). doi: 10.1039/b816254a |
[39] |
Tao, P. et al. TiO2 nanocomposites with high refractive index and transparency. Journal of Materials Chemistry 21, 18623-18629 (2011). doi: 10.1039/c1jm13093e |
[40] |
Werdehausen, D. et al. Design rules for customizable optical materials based on nanocomposites. Optical Materials Express 8, 3456-3469 (2018). doi: 10.1364/OME.8.003456 |
[41] |
Werdehausen, D. et al. Dispersion-engineered nanocomposites enable achromatic diffractive optical elements. Optica 6, 1031-1038 (2019). doi: 10.1364/OPTICA.6.001031 |
[42] |
Gross, H. Handbook of Optical Systems Volume 1: Fundamentals of Technical Optics (Weinheim: WILEY-VHC, 2005). |
[43] |
Zyla, G. et al. 3D micro-devices for enhancing the lateral resolution in optical microscopy. Light: Advanced Manufacturing 5, 204-217 (2024). |
[44] |
Kirchner, R., Chidambaram, N. & Schift, H. Benchmarking surface selective vacuum ultraviolet and thermal postprocessing of thermoplastics for ultrasmooth 3-D-printed micro-optics. Optical Engineering 57, 041403 (2018). |
[45] |
Rothermel, F. et al. Fabrication and characterization of a magnetic 3D-printed microactuator. Advanced Materials Technologies 9, 2302196 (2024). doi: 10.1002/admt.202302196 |
[46] |
Stein, O. et al. Fabrication of low-density shock-propagation targets using two-photon polymerization. Fusion Science and Technology 73, 153-165 (2018). doi: 10.1080/15361055.2017.1406237 |
[47] |
Williams, H. E. et al. Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8. Optics express 19, 22910-22922 (2011). doi: 10.1364/OE.19.022910 |
[48] |
Liao, C. Z., Wuethrich, A. & Trau, M. A material odyssey for 3D nano/microstructures: two photon polymerization based nanolithography in bioapplications. Applied Materials Today 19, 100635 (2020). doi: 10.1016/j.apmt.2020.100635 |
[49] |
Toulouse, A. et al. Ultra-compact 3D-printed wide-angle cameras realized by multi-aperture freeform optical design. Optics Express 30, 707-720 (2022). doi: 10.1364/OE.439963 |
[50] |
Weinacker, J. et al. On iterative pre-compensation of 3D laser-printed micro-optical components using confocal-optical microscopy. Advanced Functional Materials 34, 2309356 (2024). doi: 10.1002/adfm.202309356 |
[51] |
Galvez, D. et al. Characterizing close-focus lenses for microendoscopy. Journal of Optical Microsystems 3, 011003 (2023). |
[52] |
Li, J. W. et al. 3D-printed micro lens-in-lens for in vivo multimodal microendoscopy. Small 18, 2107032 (2022). doi: 10.1002/smll.202107032 |
[53] |
Toulouse, A. et al. Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics. Optics Letters 43, 5283-5286 (2018). doi: 10.1364/OL.43.005283 |
[54] |
Wilde, F. et al. Micro-CT at the imaging beamline P05 at PETRA III. AIP conference Proceedings 1741, 030035 (2016). |
[55] |
Bianchi, S. et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Optics letters 38, 4935-4938 (2013). doi: 10.1364/OL.38.004935 |
[56] |
Doth, K., Haist, T. & Reichelt, S. Towards pathogen detection with 3D-printed micro-optics in microfluidic systems. Proceedings of SPIE 12876, Laser 3D Manufacturing XI. San Francisco, California, United States: SPIE, 2024, 172-175. |
[57] |
Drozella, J. et al. Fast and comfortable GPU-accelerated wave-optical simulation for imaging properties and design of highly aspheric 3D-printed freeform microlens systems. Proceedings of SPIE 11105, Novel Optical Systems, Methods, and Applications XXII. San Diego, California, United States: SPIE, 2019, 27-33. |