[1] Cakmakci, O. & Rolland, J. Head-worn displays: a review. Journal of Display Technology 2, 199-216 (2006). doi: 10.1109/JDT.2006.879846
[2] Kress, B. C. & Chatterjee, I. Waveguide combiners for mixed reality headsets: a nanophotonics design perspective. Nanophotonics 10, 41-74 (2021).
[3] Yano, S. et al. A study of visual fatigue and visual comfort for 3D HDTV/HDTV images. Displays 23, 191-201 (2002). doi: 10.1016/S0141-9382(02)00038-0
[4] Hoffman, D. M. et al. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 33 (2008).
[5] Shibata, T. et al. The zone of comfort: predicting visual discomfort with stereo displays. Journal of Vision 11, 11 (2011).
[6] Padmanaban, N. et al. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. Proceedings of the National Academy of Sciences of the United States of America 114, 2183-2188 (2017). doi: 10.1073/pnas.1617251114
[7] Lee, B., Yoo, C. & Jeong, J. Holographic optical elements for augmented reality systems. Proceedings of SPIE 11551, Holography, Diffractive Optics, and Applications X. Online: SPIE, 2020.
[8] Xiong, J. H. et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Advanced Photonics Research 2, 2000049 (2021). doi: 10.1002/adpr.202000049
[9] Chang, C. L. et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563-1578 (2020). doi: 10.1364/OPTICA.406004
[10] Yeom, H. J. et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Optics Express 23, 32025-32034 (2015). doi: 10.1364/OE.23.032025
[11] Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Transactions on Graphics 36, 85 (2017).
[12] Nam, S. W. et al. Aberration-corrected full-color holographic augmented reality near-eye display using a Pancharatnam-Berry phase lens. Optics Express 28, 30836-30850 (2020). doi: 10.1364/OE.405131
[13] Kim, D. et al. Vision-correcting holographic display: evaluation of aberration correcting hologram. Biomedical Optics Express 12, 5179-5195 (2021). doi: 10.1364/BOE.433919
[14] Lee, S. et al. Analysis and implementation of hologram lenses for see-through head-mounted display. IEEE Photonics Technology Letters 29, 82-85 (2017). doi: 10.1109/LPT.2016.2628906
[15] Bang, K., Jang, C. & Lee, B. Curved holographic optical elements and applications for curved see-through displays. Journal of Information Display 20, 9-23 (2019). doi: 10.1080/15980316.2019.1570978
[16] Bigler, C. M., Mann, M. S. & Blanche, P. A. Holographic waveguide HUD with in-line pupil expansion and 2D FOV expansion. Applied Optics 58, G326-G331 (2019). doi: 10.1364/AO.58.00G326
[17] Akşit, K. et al. Near-eye varifocal augmented reality display using see-through screens. ACM Transactions on Graphics 36, 189 (2017).
[18] Jang, C. et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Transactions on Graphics 36, 190 (2017).
[19] Piao, J. A. et al. Full color holographic optical element fabrication for waveguide-type head mounted display using photopolymer. Journal of the Optical Society of Korea 17, 242-248 (2013). doi: 10.3807/JOSK.2013.17.3.242
[20] Lee, S. et al. Additive light field displays: realization of augmented reality with holographic optical elements. ACM Transactions on Graphics 35, 60 (2016).
[21] Yeom, J. et al. Three-dimensional/two-dimensional convertible projection screen using see-through integral imaging based on holographic optical element. Applied Optics 54, 8856-8862 (2015). doi: 10.1364/AO.54.008856
[22] Xiong, J. H. et al. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses. Optics Letters 46, 1760-1763 (2021). doi: 10.1364/OL.422559
[23] Jo, Y. et al. Eye-box extended retinal projection type near-eye display with multiple independent viewpoints. Applied Optics 60, A268-A276 (2021). doi: 10.1364/AO.408707
[24] Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Optics Letters 43, 767-770 (2018). doi: 10.1364/OL.43.000767
[25] Lin, T. G. et al. Maxwellian near-eye display with an expanded eyebox. Optics Express 28, 38616-38625 (2020). doi: 10.1364/OE.413471
[26] Yoo, C. et al. Retinal projection type lightguide-based near-eye display with switchable viewpoints. Optics Express 28, 3116-3135 (2020). doi: 10.1364/OE.383386
[27] Moon, S. et al. Compact augmented reality combiner using Pancharatnam-Berry phase lens. IEEE Photonics Technology Letters 32, 235-238 (2020). doi: 10.1109/LPT.2020.2968340
[28] Yin, K. et al. Doubling the FOV of AR displays with a liquid crystal polarization-dependent combiner. Optics Express 29, 11512-11519 (2021). doi: 10.1364/OE.422639
[29] Yoo, C. et al. Dual-focal waveguide see-through near-eye display with polarization-dependent lenses. Optics Letters 44, 1920-1923 (2019). doi: 10.1364/OL.44.001920
[30] Kim, J. et al. Foveated AR: dynamically-foveated augmented reality display. ACM Transactions on Graphics 38, 99 (2019).
[31] Yoo, C. et al. Foveated display system based on a doublet geometric phase lens. Optics Express 28, 23690-23702 (2020). doi: 10.1364/OE.399808
[32] Jeong, J. et al. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technology Letters 32, 991-994 (2020). doi: 10.1109/LPT.2020.3008215
[33] Jang, C. et al. Design and fabrication of freeform holographic optical elements. ACM Transactions on Graphics 39, 184 (2020).
[34] Sung, J., Lee, G. Y. & Lee, B. Progresses in the practical metasurface for holography and lens. Nanophotonics 8, 1701-1718 (2019). doi: 10.1515/nanoph-2019-0203
[35] Lee, G. Y., Sung, J. & Lee, B. Metasurface optics for imaging applications. MRS Bulletin 45, 202-209 (2020). doi: 10.1557/mrs.2020.64
[36] Jiang, Q., Jin, G. F. & Cao, L. C. When metasurface meets hologram: principle and advances. Advances in Optics and Photonics 11, 518-576 (2019). doi: 10.1364/AOP.11.000518
[37] Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nature Communications 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5
[38] Li, Z. Y. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Science Advances 7, eabe4458 (2021). doi: 10.1126/sciadv.abe4458
[39] Nikolov, D. K. et al. Metaform optics: bridging nanophotonics and freeform optics. Science Advances 7, eabe5112 (2021). doi: 10.1126/sciadv.abe5112
[40] Westheimer, G. The Maxwellian view. Vision Research 6, 669-682 (1966). doi: 10.1016/0042-6989(66)90078-2
[41] Takaki, Y. & Fujimoto, N. Flexible retinal image formation by holographic Maxwellian-view display. Optics Express 26, 22985-22999 (2018). doi: 10.1364/OE.26.022985
[42] Von Waldkirch, M., Lukowicz, P. & Tröster, G. Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing. Optics Express 11, 3220-3233 (2003). doi: 10.1364/OE.11.003220
[43] Wu, Y. H. et al. Design of retinal-projection-based near-eye display with contact lens. Optics Express 26, 11553-11567 (2018). doi: 10.1364/OE.26.011553
[44] Konrad, R. et al. Accommodation-invariant computational near-eye displays. ACM Transactions on Graphics 36, 88 (2017).
[45] Dunn, D. et al. Membrane AR: varifocal, wide field of view augmented reality display from deformable membranes. Proceedings of ACM SIGGRAPH 2017 Emerging Technologies. New York: ACM, 2017.
[46] Liu, S. X. et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Optics Express 26, 3394-3403 (2018). doi: 10.1364/OE.26.003394
[47] Cui, Wei. & Gao, L. Optical mapping near-eye three-dimensional display with correct focus cues. Optics Letters 42, 2475-2478 (2017). doi: 10.1364/OL.42.002475
[48] Klug, M. A., Cahall, S. C. & Chung, H. Separated pupil optical systems for virtual and augmented reality and methods for displaying images using same. (2016).
[49] Huang, H. K. & Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Optics Express 26, 17578-17590 (2018). doi: 10.1364/OE.26.017578
[50] Lanman, D. & Luebke, D. Near-eye light field displays. ACM Transactions on Graphics 32, 220 (2013).
[51] Chou, P. Y. et al. Hybrid light field head-mounted display using time-multiplexed liquid crystal lens array for resolution enhancement. Optics Express 27, 1164-1177 (2019). doi: 10.1364/OE.27.001164
[52] Huang, F. C., Chen, K. & Wetzstein, G. The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Transactions on Graphics 34, 60 (2015).
[53] Ueno, T. & Takaki, Y. Super multi-view near-eye display to solve vergence-accommodation conflict. Optics Express 26, 30703-30715 (2018). doi: 10.1364/OE.26.030703
[54] Yeom, J., Son, Y. & Choi, K. Crosstalk reduction in voxels for a see-through holographic waveguide by using integral imaging with compensated elemental images. Photonics 8, 217 (2021). doi: 10.3390/photonics8060217
[55] Wakunami, K. et al. Projection-type see-through holographic three-dimensional display. Nature Communications 7, 12954 (2016). doi: 10.1038/ncomms12954
[56] Li, X. et al. 3D dynamic holographic display by modulating complex amplitude experimentally. Optics Express 21, 20577-20587 (2013). doi: 10.1364/OE.21.020577
[57] Moon, E. et al. Holographic head-mounted display with RGB light emitting diode light source. Optics Express 22, 6526-6534 (2014). doi: 10.1364/OE.22.006526
[58] Zhang, Z. Q. et al. A full-color compact 3D see-through near-eye display system based on complex amplitude modulation. Optics Express 27, 7023-7035 (2019). doi: 10.1364/OE.27.007023
[59] Park, J. H. & Kim, S. B. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Optics Express 26, 27076-27088 (2018). doi: 10.1364/OE.26.027076
[60] Kozacki, T. et al. Extended viewing angle holographic display system with tilted SLMs in a circular configuration. Applied Optics 51, 1771-1780 (2012). doi: 10.1364/AO.51.001771
[61] Hahn, J. et al. Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Optics Express 16, 12372-12386 (2008). doi: 10.1364/OE.16.012372
[62] Li, J., Smithwick, Q. & Chu, D. P. Scalable coarse integral holographic video display with integrated spatial image tiling. Optics Express 28, 9899-9912 (2020). doi: 10.1364/OE.386675
[63] An, J. et al. Slim-panel holographic video display. Nature Communications 11, 5568 (2020). doi: 10.1038/s41467-020-19298-4
[64] Jang, C. et al. Holographic near-eye display with expanded eye-box. ACM Transactions on Graphics 37, 195 (2018).
[65] Choi, M. H., Ju, Y. G. & Park, J. H. Holographic near-eye display with continuously expanded eyebox using two-dimensional replication and angular spectrum wrapping. Optics Express 28, 533-547 (2020). doi: 10.1364/OE.381277
[66] Park, J., Lee, K. & Park, Y. Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nature Communications 10, 1304 (2019). doi: 10.1038/s41467-019-09126-9
[67] Kuo, G. et al. High resolution étendue expansion for holographic displays. ACM Transactions on Graphics 39, 66 (2020).
[68] Guenter, B. et al. Foveated 3D graphics. ACM Transactions on Graphics 31, 164 (2012).
[69] Patney, A. et al. Towards foveated rendering for gaze-tracked virtual reality. ACM Transactions on Graphics 35, 179 (2016).
[70] Hong, J. et al. Gaze contingent hologram synthesis for holographic head-mounted display. Proceedings of SPIE 9771, Practical Holography XXX: Materials and Applications. San Francisco: SPIE, 2016.
[71] Wei, L. J. & Sakamoto, Y. J. Fast calculation method with foveated rendering for computer-generated holograms using an angle-changeable ray-tracing method. Applied Optics 58, A258-A266 (2019). doi: 10.1364/AO.58.00A258
[72] Ju, Y. G. & Park, J. H. Foveated computer-generated hologram and its progressive update using triangular mesh scene model for near-eye displays. Optics Express 27, 23725-23738 (2019). doi: 10.1364/OE.27.023725
[73] Chang, C. L., Cui, W. & Gao, L. Foveated holographic near-eye 3D display. Optics Express 28, 1345-1356 (2020). doi: 10.1364/OE.384421
[74] Cem, A. et al. Foveated near-eye display using computational holography. Scientific Reports 10, 14905 (2020). doi: 10.1038/s41598-020-71986-9
[75] Lee, S. et al. Foveated near-eye display for mixed reality using liquid crystal photonics. Scientific Reports 10, 16127 (2020). doi: 10.1038/s41598-020-72555-w
[76] Lee, B. et al. Wide-angle speckleless DMD holographic display using structured illumination with temporal multiplexing. Optics Letters 45, 2148-2151 (2020). doi: 10.1364/OL.390552
[77] Takaki, Y. & Yokouchi, M. Speckle-free and grayscale hologram reconstruction using time-multiplexing technique. Optics Express 19, 7567-7579 (2011). doi: 10.1364/OE.19.007567
[78] Ko, S. B. & Park, J. H. Speckle reduction using angular spectrum interleaving for triangular mesh based computer generated hologram. Optics Express 25, 29788-29797 (2017). doi: 10.1364/OE.25.029788
[79] Lee, S. et al. Light source optimization for partially coherent holographic displays with consideration of speckle contrast, resolution, and depth of field. Scientific Reports 10, 18832 (2020). doi: 10.1038/s41598-020-75947-0
[80] Horisaki, R., Takagi, R. & Tanida, J. Deep-learning-generated holography. Applied Optics 57, 3859-3863 (2018). doi: 10.1364/AO.57.003859
[81] Lee, J. et al. Deep neural network for multi-depth hologram generation and its training strategy. Optics Express 28, 27137-27154 (2020). doi: 10.1364/OE.402317
[82] Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0
[83] Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Transactions on Graphics 39, 185 (2020).
[84] Choi, S. et al. Neural 3D holography: Learning accurate wave propagation models for 3D holographic virtual and augmented reality displays. ACM Transactions on Graphics 40, 240 (2021).