[1] Hashimoto, K. et al. Upconversion time-stretch infrared spectroscopy. Light: Science & Applications 12 , 48 (2023).
[2] Luo, H. J. et al. Helmholtz-resonator quartz-enhanced photoacoustic spectroscopy. Optics Letters 48, 1678-1681 (2023). doi: 10.1364/OL.481457
[3] Zhang, Z. D. et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. Light: Science & Applications 11 , 274 (2022).
[4] Chen, J. Y. et al. Tracing the formation of oxygen vacancies at the conductive LaAlO3/SrTiO3 interface via photoemission. Opto-Electronic Science 1, 210011 (2022). doi: 10.29026/oes.2022.210011
[5] Zhang, C. et al. Trace gas sensor based on a multi-pass-retro-reflection-enhanced differential Helmholtz photoacoustic cell and a power amplified diode laser. Optics Express 32, 848-856 (2024). doi: 10.1364/OE.512104
[6] Lang, Z. T. et al. Dual-frequency modulated heterodyne quartz-enhanced photoacoustic spectroscopy. Optics Express 32, 379-386 (2024). doi: 10.1364/OE.506861
[7] Qiao, S. D. et al. Ultra-highly sensitive dual gases detection based on photoacoustic spectroscopy by exploiting a long-wave, high-power, wide-tunable, single-longitudinal-mode solid-state laser. Light: Science & Applications 13 , 100 (2024).
[8] Yang, W. et al. Real-time molecular imaging of near-surface tissue using Raman spectroscopy. Light: Science & Applications 11 , 90 (2022).
[9] Ge, H. et al. Simple technique of coupling a diode laser into a linear power buildup cavity for Raman gas sensing. Optics Letters 48, 2186-2189 (2023). doi: 10.1364/OL.486417
[10] Liang, T. T. et al. High-sensitivity methane detection based on QEPAS and H-QEPAS technologies combined with a self-designed 8.7 kHz quartz tuning fork. Photoacoustics 36 , 100592 (2024).
[11] Gao, H. et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electronic Science 2, 220026 (2023). doi: 10.29026/oes.2023.220026
[12] Chen, W. P. et al. Quasi-distributed quartz enhanced photoacoustic spectroscopy sensing based on hollow waveguide micropores. Optics Letters 49, 2765-2768 (2024). doi: 10.1364/OL.525188
[13] Le, J. M. et al. A novel scheme for ultrashort terahertz pulse generation over a gapless wide spectral range: Raman-resonance-enhanced four-wave mixing. Light: Science & Applications 12 , 34 (2023).
[14] Zheng, Z. H. et al. Towards integrated mode-division demultiplexing spectrometer by deep learning. Opto-Electronic Science 1, 220012 (2022). doi: 10.29026/oes.2022.220012
[15] Wang, Y. Q. et al. Brillouin scattering spectrum for liquid detection and applications in oceanography. Opto-Electronic Advances 6, 220016 (2023). doi: 10.29026/oea.2023.220016
[16] Wang, Y. F. et al. Testing universality of Feynman-Tan relation in interacting Bose gases using high-order Bragg spectra. Light: Science & Applications 12 , 50 (2023).
[17] Wang, X. Y. et al. Flat soliton microcomb source. Opto-Electronic Science 2, 230024 (2023). doi: 10.29026/oes.2023.230024
[18] Sun, H. Y. et al. Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell. Opto-Electronic Science 3, 240013 (2024).
[19] Liu, X. N. & Ma, Y. F. New temperature measurement method based on light-induced thermoelastic spectroscopy. Optics Letters 48, 5687-5690 (2023). doi: 10.1364/OL.503287
[20] Ma, Y. F. et al. Highly sensitive and fast hydrogen detection based on light-induced thermoelastic spectroscopy. Ultrafast Science 3, 0024 (2023). doi: 10.34133/ultrafastscience.0024
[21] Hu, L. E. et al. Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy. Photoacoustics 21, 100230 (2021). doi: 10.1016/j.pacs.2020.100230
[22] Lang, Z. T., Qiao, S. D. & Ma, Y. F. Fabry–perot-based phase demodulation of heterodyne light-induced thermoelastic spectroscopy. Light: Advanced Manufacturing 4, 233-242 (2023).
[23] Sun, B. et al. Light-induced thermoelastic sensor for ppb-level H2S detection in a SF6 gas matrices exploiting a mini-multi-pass cell and quartz tuning fork photodetector. Photoacoustics 33, 100553 (2023). doi: 10.1016/j.pacs.2023.100553
[24] Chen, W. P. et al. Mid-infrared all-fiber light-induced thermoelastic spectroscopy sensor based on hollow-core anti-resonant fiber. Photoacoustics 36, 100594 (2024). doi: 10.1016/j.pacs.2024.100594
[25] Ma, Y. F. et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection. Optics Express 26, 32103-32110 (2018). doi: 10.1364/OE.26.032103
[26] Wu, Q. et al. Side-excitation light-induced thermoelastic spectroscopy. Optics Letters 48, 562-565 (2023). doi: 10.1364/OL.478630
[27] Hu, M. P. et al. Harmonic phase-sensitive detection for quartz-enhanced photoacoustic-thermoelastic spectroscopy. Photoacoustics 38, 100633 (2024). doi: 10.1016/j.pacs.2024.100633
[28] Lou, C. G. et al. Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork. Photoacoustics 31, 100515 (2023). doi: 10.1016/j.pacs.2023.100515
[29] Zifarelli, A. et al. Multi-gas quartz-enhanced photoacoustic sensor for environmental monitoring exploiting a Vernier effect-based quantum cascade laser. Photoacoustics 28, 100401 (2022). doi: 10.1016/j.pacs.2022.100401
[30] Liu, X. N. et al. Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting. Photoacoustics 28, 100422 (2022). doi: 10.1016/j.pacs.2022.100422
[31] Wang, Z. et al. Cavity-enhanced photoacoustic dual-comb spectroscopy. Light: Science & Applications 13 , 11 (2024).
[32] Ma, Y. F. et al. HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork. Sensors and Actuators B: Chemical 233 , 388-393 (2016).
[33] Wang, Z. et al. Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range. Photoacoustics 27, 100387 (2022). doi: 10.1016/j.pacs.2022.100387
[34] Qiao, S. D. et al. Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell. Photoacoustics 27, 100381 (2022). doi: 10.1016/j.pacs.2022.100381
[35] He, Y. et al. Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell. Optics Letters 44, 1904-1907 (2019). doi: 10.1364/OL.44.001904
[36] Zhao, X. Y. et al. Multi-pass differential photoacoustic sensor for real-time measurement of SF6 decomposition component H2S at the ppb level. Analytical Chemistry 95, 8214-8222 (2023). doi: 10.1021/acs.analchem.3c00003
[37] Liu, Y. H. & Ma, Y. F. Advances in multipass cell for absorption spectroscopy-based trace gas sensing technology [Invited]. Chinese Optics Letters 21, 033001 (2023). doi: 10.3788/COL202321.033001
[38] Cao, Y. N. et al. Generalized calculation model of different types of optical multi-pass cells based on refraction and reflection law. Optics & Laser Technology 139, 106958 (2021).
[39] Liu, X. N. & Ma, Y. F. Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell [Invited]. Chinese Optics Letters 20, 031201 (2022). doi: 10.3788/COL202220.031201
[40] Zhang, C. et al. Differential integrating sphere-based photoacoustic spectroscopy gas sensing. Optics Letters 48, 5089-5092 (2023). doi: 10.1364/OL.500214
[41] Guo, M. et al. Multi-mechanism collaboration enhanced photoacoustic analyzer for trace H2S detection. Photoacoustics 29, 100449 (2023). doi: 10.1016/j.pacs.2023.100449
[42] Herriott, D., Kogelnik, H. & Kompfner, R. Off-axis paths in spherical mirror Interferometers. Applied Optics 3, 523-526 (1964). doi: 10.1364/AO.3.000523
[43] Herriott, D. R. & Schulte, H. J. Folded optical delay lines. Applied Optics 4, 883-889 (1965). doi: 10.1364/AO.4.000883
[44] Cui, R. Y. et al. Generalized optical design of two-spherical-mirror multi-pass cells with dense multi-circle spot patterns. Applied Physics Letters 116, 091103 (2020). doi: 10.1063/1.5145356
[45] Cui, R. Y. et al. Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration. Optics Letters 44, 1108-1111 (2019). doi: 10.1364/OL.44.001108
[46] Hudzikowski, A. et al. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm. Optics Express 29, 26127-26136 (2021). doi: 10.1364/OE.432541
[47] Ghorbani, R. & Schmidt, F. M. ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes. Optics Express 25 , 12743-12752 (2017).
[48] Chen, H. D., Chen, C. & Wang, Y. Z. Auto-design of multi-pass cell with small size and long optical path length using parallel multi-population genetic algorithm. IEEE Sensors Journal 22, 6518-6527 (2022).
[49] Du, Y. J., Peng, Z. M. & Ding, Y. J. High-accuracy sinewave-scanned direct absorption spectroscopy. Optics Express 26, 29550-29560 (2018). doi: 10.1364/OE.26.029550
[50] Sirleto, L. & Ferrara, M. A. Fiber amplifiers and fiber Lasers based on stimulated Raman scattering: a review. Micromachines 11, 247 (2020). doi: 10.3390/mi11030247
[51] Fang, C. et al. Design and sensing performance of T-shaped quartz tuning forks. Acta Optica Sinica 43, 1899910 (2023). doi: 10.3788/AOS231163
[52] Zifarelli, A. et al. Methane and ethane detection from natural gas level down to trace concentrations using a compact mid-IR LITES sensor based on univariate calibration. Photoacoustics 29, 100448 (2023). doi: 10.1016/j.pacs.2023.100448
[53] Liu, X. N. , Qiao, S. D. & Ma, Y. F. Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 μm diode laser and adaptive Savitzky-Golay filtering. Optics Express 30 , 1304-1313 (2022).
[54] Ma, Y. M. et al. Optical-domain modulation cancellation method for background-suppression and dual-gas detection in light-induced thermo-elastic spectroscopy. Sensors and Actuators B: Chemical 404, 135168 (2024). doi: 10.1016/j.snb.2023.135168