[1] Zeng, X. G. et al. Landing site of the Chang’e-6 lunar farside sample return mission from the Apollo basin. Nature Astronomy 7, 1188-1197 (2023). doi: 10.1038/s41550-023-02038-1
[2] Yue, Z. Y. et al. Geological context of the Chang’e-6 landing area and implications for sample analysis. The Innovation 5, 100663 (2024 doi: 10.1016/j.xinn.2024.100663
[3] Grotzinger, J. P. et al. Mars science laboratory mission and science investigation. Space Science Reviews 170, 5-56 (2012). doi: 10.1007/s11214-012-9892-2
[4] Anderson, R. C. et al. Collecting samples in gale crater, mars; an overview of the mars science laboratory sample acquisition, sample processing and handling system. Space Science Reviews 170, 57-75 (2012). doi: 10.1007/s11214-012-9898-9
[5] Basilevsky, A. T. et al. Clarification of sources of material returned by Luna 24 spacecraft based on analysis of new images of the landing site taken by lunar reconnaissance orbiter. Geochemistry International 51, 456-472 (2013). doi: 10.1134/S0016702913060025
[6] Galimov, E. M. Luna-glob project in the context of the past and present lunar exploration in Russia. Journal of Earth System Science 114, 801-806 (2005). doi: 10.1007/BF02715966
[7] Backes, P. et al. BiBlade sampling tool validation for comet surface environments. Proceedings of 2017 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2017, 1-20.
[8] Scott, R. F. & Roberson, F. I. Soil mechanics surface sampler: lunar surface tests, results, and analyses. Journal of Geophysical Research 73, 4045-4080 (1968). doi: 10.1029/JB073i012p04045
[9] Holmberg, N. A. Viking'75 Spacecraft Design and Test Summary. (NASA Scientific and Technical Information Branch, 1980).
[10] Yang W. & Lin Y. New lunar samples returned by Chang’e-5: opportunities for new discoveries and international collaboration. The Innovation 2, 100070 (2021 doi: 10.1016/j.xinn.2020.100070
[11] Zheng, Y. C. et al. China's lunar exploration program: present and future. Planetary and Space Science 56, 881-886 (2008). doi: 10.1016/j.pss.2008.01.002
[12] Zacny, K. et al. Asteroids: anchoring and sample acquisition approaches in support of science, exploration, and in situ resource utilization. in Asteroids: Prospective Energy and Material Resources (ed Badescu, V. ) (Berlin, Heidelberg: Springer, 2013), 287-343.
[13] Müller, T. G. et al. Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): searching for the object’s spin-axis orientation. Astronomy & Astrophysics 599, A103 (2017).
[14] Allton, J. H. Catalog of Apollo Lunar Surface Geological Sampling Tools and Containers. (NASA Lyndon B. Johnson Space Center, 1989).
[15] Zhou, C. Y. et al. Scientific objectives and payloads of the lunar sample return mission—Chang’E-5. Advances in Space Research 69, 823-836 (2022). doi: 10.1016/j.asr.2021.09.001
[16] Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 328-341 (2008). doi: 10.1109/TPAMI.2007.1166
[17] Geiger, A. , Martin R. & Raquel U. Efficient large-scale stereo matching. Proceedings of 10th Asian Conference on Computer Vision. Queenstown, New Zealand: Springer, 2010, 25-38.
[18] Bleyer, M. , Rhemann, C. & Rother, C. PatchMatch stereo-stereo matching with slanted support windows. Proceedings of the 22nd British Machine Vision Conference. Dundee: BMVC, 2011, 1-11.
[19] Chang, J. R. & Chen, Y. S. Pyramid stereo matching network. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018, 5410-5418.
[20] Zhao, H. L. et al. High-frequency stereo matching network. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023, 1327-1336.
[21] Lipson, L. , Teed, Z. & Deng, J. RAFT-Stereo: multilevel recurrent field transforms for stereo matching. Proceedings of 2021 International Conference on 3D Vision (3DV). London, United Kingdom: IEEE, 2021, 218-227.
[22] Xu, H. F. et al. Unifying flow, stereo and depth estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 13941-13958 (2023). doi: 10.1109/TPAMI.2023.3298645
[23] Li, J. K. et al. Practical stereo matching via cascaded recurrent network with adaptive correlation. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, LA, USA: IEEE, 2022, 16242-16251.
[24] Zhang, T. et al. Review on planetary regolith-sampling technology. Progress in Aerospace Sciences 127, 100760 (2021). doi: 10.1016/j.paerosci.2021.100760
[25] Zhang, T. et al. The progress of extraterrestrial regolith-sampling robots. Nature Astronomy 3, 487-497 (2019). doi: 10.1038/s41550-019-0804-1
[26] Su, Z. L. et al. Geometry constrained correlation adjustment for stereo reconstruction in 3D optical deformation measurements. Optics Express 28, 12219-12232 (2020). doi: 10.1364/OE.392248
[27] Yin, W. et al. Single-shot 3D shape measurement using an end-to-end stereo matching network for speckle projection profilometry. Optics Express 29, 13388-13407 (2021). doi: 10.1364/OE.418881
[28] Li, H. Y. , Lin, J. H. & Jia, K. DCL-Net: deep correspondence learning network for 6D pose estimation. Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022, 369-385.
[29] Wang, Y. & Solomon, J. M. Deep closest point: learning representations for point cloud registration. Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea (South): IEEE, 2019, 3522-3531.
[30] Dang, Z. et al. Learning-based point cloud registration for 6D object pose estimation in the real world. Proceedings of the 17th European Conference on Computer Vision. Tel Aviv, Israel: Springer, 2022, 19-37.
[31] Yang, H., Shi, J. N. & Carlone, L. Teaser: fast and certifiable point cloud registration. IEEE Transactions on Robotics 37, 314-333 (2021). doi: 10.1109/TRO.2020.3033695
[32] Zhang, X. Y. et al. 3D registration with maximal cliques. Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023, 17745-17754.
[33] Qin, Z. et al. GeoTransformer: fast and robust point cloud registration with geometric transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 9806-9821 (2023). doi: 10.1109/TPAMI.2023.3259038
[34] Zhang, K. Q. et al. A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing 41, 872-882 (2003). doi: 10.1109/TGRS.2003.810682
[35] Kirkpatrick, S. , Gelatt, C. D. Jr. & Vecchi, M. P. Optimization by simulated annealing. Science 220 , 671-680 (1983).
[36] Redmon, J. et al. You only look once: unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016, 779-788.
[37] Besl, P. J. & McKay, N. D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 239-256 (1992). doi: 10.1109/34.121791
[38] Rusu, R. B. & Cousins, S. 3D is here: point cloud library (PCL). Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011, 1-4.
[39] Lowe, D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91-110 (2004). doi: 10.1023/B:VISI.0000029664.99615.94
[40] Rusu, R. B. , Blodow, N. & Beetz, M. Fast point feature histograms (FPFH) for 3D registration. Proceedings of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009, 3212-3217.