[1] |
De Biasi, S. et al. Rare cells: focus on detection and clinical relevance. In Single Cell Analysis (eds Robinson, J. & Cossarizza, A.) 35-98 (Springer, Singapore, 2017). |
[2] |
Jindal, A. et al. Discovery of rare cells from voluminous single cell expression data. Nat. Commun. 9, 4719 (2018). doi: 10.1038/s41467-018-07234-6 |
[3] |
Arvaniti, E. & Claassen, M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nat. Commun. 8, 14825 (2017). doi: 10.1038/ncomms14825 |
[4] |
Rezaei, M. et al. A reappraisal of circulating fetal cell noninvasive prenatal testing. Trends Biotechnol. 37, 632-644 (2019). doi: 10.1016/j.tibtech.2018.11.001 |
[5] |
Bacher, P. & Scheffold, A. Flow-cytometric analysis of rare antigen-specific T cells. Cytom. Part A: J. Int. Soc. Anal. Cytol. 83A, 692-701 (2013). doi: 10.1002/cyto.a.22317 |
[6] |
Bertolini, F. et al. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer 6, 835-845 (2006). doi: 10.1038/nrc1971 |
[7] |
Lang, J. M., Casavant, B. P. & Beebe, D. J. Circulating tumor cells: getting more from less. Sci. Transl. Med. 4, 141ps13 (2012). |
[8] |
Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994-1008 (2007). doi: 10.1016/j.cell.2007.09.047 |
[9] |
Dharmasiri, U. et al. Microsystems for the capture of low-abundance cells. Annu. Rev. Anal. Chem. 3, 409-431 (2010). doi: 10.1146/annurev.anchem.111808.073610 |
[10] |
Zborowski, M. & Chalmers, J. J. Rare cell separation and analysis by magnetic sorting. Anal. Chem. 83, 8050-8056 (2011). doi: 10.1021/ac200550d |
[11] |
Chen, Y. C. et al. Rare cell isolation and analysis in microfluidics. Lab a Chip 14, 626-645 (2014). doi: 10.1039/c3lc90136j |
[12] |
Shen, Z. Y., Wu, A. G. & Chen, X. Y. Current detection technologies for circulating tumor cells. Chem. Soc. Rev. 46, 2038-2056 (2017). doi: 10.1039/C6CS00803H |
[13] |
Zheng, F. Y. et al. Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Adv. Mater. 26, 7333-7338 (2014). doi: 10.1002/adma.201403530 |
[14] |
Talasaz, A. H. et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970-3975 (2009). doi: 10.1073/pnas.0813188106 |
[15] |
Balasubramanian, S. et al. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161-4164 (2011). doi: 10.1002/anie.201100115 |
[16] |
Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235-1239 (2007). doi: 10.1038/nature06385 |
[17] |
Park, J. M. et al. Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem. 84, 7400-7407 (2012). doi: 10.1021/ac3011704 |
[18] |
Xiong, K. et al. Biomimetic immuno-magnetosomes for high-performance enrichment of circulating tumor cells. Adv. Mater. 28, 7929-7935 (2016). doi: 10.1002/adma.201601643 |
[19] |
Lu, N. N. et al. Biotin-triggered decomposable immunomagnetic beads for capture and release of circulating tumor cells. ACS Appl. Mater. Interfaces 7, 8817-8826 (2015). doi: 10.1021/acsami.5b01397 |
[20] |
Han, S. I. & Han, K. H. Electrical detection method for circulating tumor cells using graphene nanoplates. Anal. Chem. 87, 10585-10592 (2015). doi: 10.1021/acs.analchem.5b03147 |
[21] |
Sha, M. Y. et al. Surface-enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J. Am. Chem. Soc. 130, 17214-17215 (2008). doi: 10.1021/ja804494m |
[22] |
Wang, L. H. et al. Promise and limits of the CellSearch platform for evaluating pharmacodynamics in circulating tumor cells. Semin. Oncol. 43, 464-475 (2016). doi: 10.1053/j.seminoncol.2016.06.004 |
[23] |
Weller, D. et al. The Aarhus statement: improving design and reporting of studies on early cancer diagnosis. Br. J. Cancer 106, 1262-1267 (2012). doi: 10.1038/bjc.2012.68 |
[24] |
Etzioni, R. et al. The case for early detection. Nat. Rev. Cancer 3, 243-252 (2003). doi: 10.1038/nrc1041 |
[25] |
Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). doi: 10.1364/OPTICA.4.001437 |
[26] |
Rivenson, Y. et al. Deep learning enhanced mobile-phone microscopy. ACS Photonics 5, 2354-2364 (2018). doi: 10.1021/acsphotonics.8b00146 |
[27] |
Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light.: Sci. Appl. 7, 17141 (2018). doi: 10.1038/lsa.2017.141 |
[28] |
Wu, Y. C. et al. Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica 5, 704-710 (2018). doi: 10.1364/OPTICA.5.000704 |
[29] |
Liu, T. R. et al. Deep learning-based super-resolution in coherent imaging systems. Sci. Rep. 9, 3926 (2019). doi: 10.1038/s41598-019-40554-1 |
[30] |
Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light.: Sci. Appl. 8, 23 (2019). doi: 10.1038/s41377-019-0129-y |
[31] |
Rivenson, Y. et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. 3, 466-477 (2019). doi: 10.1038/s41551-019-0362-y |
[32] |
Wang, H. D. et al. Deep learning enables cross-modality super-resolution in fluorescence microscopy. Nat. Methods 16, 103-110 (2019). doi: 10.1038/s41592-018-0239-0 |
[33] |
Wu, Y. C. et al. Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light.: Sci. Appl. 8, 25 (2019). doi: 10.1038/s41377-019-0139-9 |
[34] |
Weigert, M. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat. Methods 15, 1090-1097 (2018). doi: 10.1038/s41592-018-0216-7 |
[35] |
Sinha, A. et al. Lensless computational imaging through deep learning. Optica 4, 1117-1125 (2017). doi: 10.1364/OPTICA.4.001117 |
[36] |
Strack, R. AI transforms image reconstruction. Nat. Methods 15, 309 (2018). doi: 10.1038/nmeth.4678 |
[37] |
Li, Y. Z., Xue, Y. J. & Tian, L. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica 5, 1181-1190 (2018). doi: 10.1364/OPTICA.5.001181 |
[38] |
Zhu, B. et al. Image reconstruction by domain-transform manifold learning. Nature 555, 487-492 (2018). doi: 10.1038/nature25988 |
[39] |
Göröcs, Z. et al. A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light.: Sci. Appl. 7, 66 (2018). doi: 10.1038/s41377-018-0067-0 |
[40] |
Wu, Y. C. et al. Label-free Bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 5, 4617-4627 (2018). doi: 10.1021/acsphotonics.8b01109 |
[41] |
Zhang, Y. B. et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning. Light.: Sci. Appl. 7, 108 (2018). doi: 10.1038/s41377-018-0110-1 |
[42] |
Kim, G. et al. Rapid and label-free identification of individual bacterial pathogens exploiting three-dimensional quantitative phase imaging and deep learning. bioRxiv. https://doi.org/10.1101/596486. (2019). |
[43] |
Lakhani, P. & Sundaram, B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology 284, 574-582 (2017). doi: 10.1148/radiol.2017162326 |
[44] |
Ehteshami Bejnordi, B. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199-2210 (2017). doi: 10.1001/jama.2017.14585 |
[45] |
Lindsey, R. et al. Deep neural network improves fracture detection by clinicians. Proc. Natl Acad. Sci. USA 115, 11591-11596 (2018). MathSciNet doi: 10.1073/pnas.1806905115 |
[46] |
De Fauw, J. et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24, 1342-1350 (2018). doi: 10.1038/s41591-018-0107-6 |
[47] |
Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44-56 (2019). doi: 10.1038/s41591-018-0300-7 |
[48] |
Anker, J. N., Behrend, C. & Kopelman, R. Aspherical magnetically modulated optical nanoprobes (MagMOONs). J. Appl. Phys. 93, 6698-6700 (2003). doi: 10.1063/1.1556926 |
[49] |
Anker, J. N. et al. Characterization and applications of modulated optical nanoprobes (MOONs). MRS Online Proc. Libr. 790, 4.1 (2003). doi: 10.1557/PROC-790-P4.1 |
[50] |
Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci. Transl. Med. 6, 267ra175 (2014). doi: 10.1126/scitranslmed.3009850 |
[51] |
Feizi, A. et al. Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab a Chip 16, 4350-4358 (2016). doi: 10.1039/C6LC00976J |
[52] |
Luo, W. et al. Synthetic aperture-based on-chip microscopy. Light.: Sci. Appl. 4, e261 (2015). doi: 10.1038/lsa.2015.34 |
[53] |
Greenbaum, A. et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci. Rep. 3, 1717 (2013). doi: 10.1038/srep01717 |
[54] |
Su, T. W., Xue, L. & Ozcan, A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc. Natl Acad. Sci. USA 109, 16018-16022 (2012). doi: 10.1073/pnas.1212506109 |
[55] |
Greenbaum, A. & Ozcan, A. Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt. Express 20, 3129-3143 (2012). doi: 10.1364/OE.20.003129 |
[56] |
Luo, W. et al. Pixel super-resolution using wavelength scanning. Light.: Sci. Appl. 5, e16060 (2016). doi: 10.1038/lsa.2016.60 |
[57] |
Zhang, Y. B. et al. Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis. Sci. Rep. 6, 28793 (2016). doi: 10.1038/srep28793 |
[58] |
Qiu, Z. F., Yao, T. & Mei, T. Learning spatio-temporal representation with pseudo-3d residual networks. In Proc. 2017 IEEE International Conference on Computer Vision. 5533-5541 (IEEE, Venice, Italy, 2017). |
[59] |
Goodman, J. W. Introduction to Fourier Optics, 3rd edn. (Roberts and Company Publishers, Englewood, Colorado, 2005). |
[60] |
Huang, G. et al. Densely connected convolutional networks. In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition. 4700-4708 (IEEE, Honolulu, HI, 2017). |
[61] |
Ye, H. et al. Evaluating two-stream CNN for video classification. In Proc. 5th ACM on International Conference on Multimedia Retrieval. 435-442, https://dl.acm.org/citation.cfm?id=2749406 (ACM, Shanghai, China, 2015). |
[62] |
Zhang, Y. B. et al. Edge sparsity criterion for robust holographic autofocusing. Opt. Lett. 42, 3824-3827 (2017). doi: 10.1364/OL.42.003824 |
[63] |
Tamamitsu, M. et al. Comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront. arXiv preprint arXiv: 1708.08055 (2017). |
[64] |
Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 4, 627-635 (2013). |
[65] |
Krause, S. et al. The microenvironment determines the breast cancer cells' phenotype: organization of MCF7 cells in 3D cultures. BMC Cancer 10, 263 (2010). doi: 10.1186/1471-2407-10-263 |
[66] |
Fatsis-Kavalopoulos, N. et al. Formation of precisely composed cancer cell clusters using a cell assembly generator (CAGE) for studying paracrine signaling at single-cell resolution. Lab a Chip 19, 1071-1081 (2019). doi: 10.1039/C8LC01153B |
[67] |
Zhao, M. X. et al. An automated high-throughput counting method for screening circulating tumor cells in peripheral blood. Anal. Chem. 85, 2465-2471 (2013). doi: 10.1021/ac400193b |
[68] |
Wu, X. X. et al. Improved SERS-active nanoparticles with various shapes for CTC detection without enrichment process with supersensitivity and high specificity. ACS Appl. Mater. Interfaces 8, 19928-19938 (2016). doi: 10.1021/acsami.6b07205 |
[69] |
Balsam, J., Bruck, H. A. & Rasooly, A. Cell streak imaging cytometry for rare cell detection. Biosens. Bioelectron. 64, 154-160 (2015). doi: 10.1016/j.bios.2014.08.065 |
[70] |
Issadore, D. et al. Ultrasensitive clinical enumeration of rare cells ex vivo using a micro-hall detector. Sci. Transl. Med. 4, 141ra92 (2012). |
[71] |
Liu, W. et al. Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels. Biosens. Bioelectron. 28, 438-442 (2011). doi: 10.1016/j.bios.2011.07.067 |
[72] |
Gao, T. et al. DNA-oriented shaping of cell features for the detection of rare disseminated tumor cells. Anal. Chem. 91, 1126-1132 (2019). doi: 10.1021/acs.analchem.8b04783 |
[73] |
Reddy, B. S. & Chatterji, B. N. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5, 1266-1271 (1996). doi: 10.1109/83.506761 |
[74] |
Jiles, D. Introduction to Magnetism and Magnetic Materials. 2nd edn. (Boca Raton: Chapman and Hall, 1998). |