[1] Bellman, R. E. Adaptive Control Processes: A Guided Tour. (Princeton: Princeton University Press, 1961).
[2] Teixidor, D. et al. Modeling pulsed laser micromachining of micro geometries using machine-learning techniques. Journal of Intelligent Manufacturing 26, 801-814 (2015). doi: 10.1007/s10845-013-0835-x
[3] Weichert, D. et al. A review of machine learning for the optimization of production processes. The International Journal of Advanced Manufacturing Technology 104, 1889-1902 (2019). doi: 10.1007/s00170-019-03988-5
[4] Liu, Q. et al. Machine-learning assisted laser powder bed fusion process optimization for alsi10mg: New microstructure description indices and fracture mechanisms. Acta Materialia 201, 316-328 (2020). doi: 10.1016/j.actamat.2020.10.010
[5] Liu, J. et al. A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing. Journal of Intelligent Manufacturing 34, 3249-3275 (2023). doi: 10.1007/s10845-022-02012-0
[6] Jones, D. R., Schonlau, M. & Welch, W. J. Efficient global optimization of expensive black-box functions. Journal of Global optimization 13, 455-492 (1998). doi: 10.1023/A:1008306431147
[7] Wang, J. J. et al. Economic parameter design for ultrafast laser micro-drilling process. International Journal of Production Research 57, 6292-6314 (2019). doi: 10.1080/00207543.2019.1566660
[8] Wahab, H. et al. Machine-learning-assisted fabrication: Bayesian optimization of laser-induced graphene patterning using in-situ raman analysis. Carbon 167, 609-619 (2020). doi: 10.1016/j.carbon.2020.05.087
[9] Ye, J. et al. Bayesian Process Optimization for Additively Manufactured Nitinol. 2021 International Solid Freeform Fabrication Symposium. Austin, Texas, USA: University of Texas at Austin, 2021. http://dx.doi.org/10.26153/tsw/17555.
[10] Bamoto, K. et al. Autonomous parameter optimization for femtosecond laser micro-drilling. Optics Express 30, 243-254 (2022). doi: 10.1364/OE.444451
[11] Michalowski, A. et al. Advanced laser processing and its optimization with machine learning. Proceedings of SPIE 12408, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXVIII. San Francisco, CA, USA: SPIE, 2023.
[12] Patil, J. J. et al. Bayesian-optimization-assisted laser reduction of poly (acrylonitrile) for electrochemical applications. ACS Nano 17, 4999-5013 (2023). doi: 10.1021/acsnano.2c12663
[13] Chepiga, T. et al. Process parameter selection for production of stainless steel 316l using efficient multiobjective bayesian optimization algorithm. Materials 16, 1050 (2023). doi: 10.3390/ma16031050
[14] Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning. (Cambridge: The MIT Press, 2006).
[15] Berk, J. et al. Exploration enhanced expected improvement for Bayesian optimization. European Conference on Machine Learning and Knowledge Discovery in Databases. Dublin, Ireland: Springer, 2019, 621-637.
[16] Srinivas, N. et al. Gaussian process optimization in the bandit setting: No regret and experimental design. Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel: ACM, 2010, 1015-1022.
[17] Sobol’, I. M. On the distribution of points in a cube and the approximate evaluation of integrals. USSR Computational Mathematics and Mathematical Physics 7, 86-112 (1967). doi: 10.1016/0041-5553(67)90144-9
[18] Balandat, M. et al. BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver, Canada: ACM, 2020, 1807.
[19] Bakshy, E. et al. AE: A domain-agnostic platform for adaptive experimentation. Proceedings of the 32nd Conference on Neural Information Processing Systems. Montreal, Canada: NIPS, 2018. ´
[20] The GPyOpt authors. GPyOpt: A bayesian optimization framework in python. (2016). http://github.com/SheffieldML/GPyOpt.
[21] The MathWorks Inc. Statistics and machine learning toolbox. https://www.mathworks.com/help/stats/bayesopt.html.
[22] Martinez-Cantin, R. Bayesopt: A bayesian optimization library for nonlinear optimization, experimental design and bandits. The Journal of Machine Learning Research 15, 3735-3739 (2014).
[23] Weissman, S. A. & Anderson, N. G. Design of experiments (doe) and process optimization. a review of recent publications. Organic Process Research & Development 19, 1605-1633 (2015).
[24] Nelder, J. A. & Mead, R. A simplex method for function minimization. The computer journal 7, 308-313 (1965). doi: 10.1093/comjnl/7.4.308
[25] McKay, M. D., Beckman, R. J. & Conover, W. J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42, 55-61 (2000). doi: 10.1080/00401706.2000.10485979
[26] Picheny, V., Wagner, T. & Ginsbourger, D. A benchmark of kriging-based infill criteria for noisy optimization. Structural and multidisciplinary optimization 48, 607-626 (2013). doi: 10.1007/s00158-013-0919-4
[27] Michalowski, A., Nyenhuis, F. & Kunz, G. Smooth surfaces by pulsed laser processing with bursts. Photonics Views 17, 42-45 (2020).
[28] Nyenhuis, F., Michalowski, A. & L’huillier, J. Dual process strategy to increase the usable power for lasermilling. Journal of Laser Micro/Nanoengineering 15, 209-213 (2020).
[29] Bocksrocker, O. et al. Local vaporization at the cut front at high laser cutting speeds. Lasers in Manufacturing and Materials Processing 7, 190-206 (2020). doi: 10.1007/s40516-020-00113-3
[30] Boley, M. et al. High-speed x-ray imaging system for the investigation of laser welding processes. Journal of Laser Applications 31, 042004 (2019). doi: 10.2351/1.5110595
[31] Schmoeller, M. et al. Numerical weld pool simulation for the accuracy improvement of inline weld depth measurement based on optical coherence tomography. Journal of Laser Applications 32, 022036 (2020). doi: 10.2351/7.0000072
[32] Boley, M. Bestimmung und Regelung der Kapillarund Nahttiefe beim Laserstrahlschweißen. PhD thesis, Universität Stuttgart, utzverlag München, 2022.
[33] Hügel, H. & Graf, T. Materialbearbeitung Mit Laser. 5th edn. (Wiesbaden: Springer, 2023).
[34] Holder, D. et al. In-process determination of fiber orientation for layer accurate laser ablation of cfrp. Procedia CIRP 74, 557-561 (2018). doi: 10.1016/j.procir.2018.08.087