[1] Lin, H. T. et al. Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7, 393-420 (2018).
[2] Fang, Y. R. et al. Mid-infrared photonics using 2D materials: status and challenges. Laser & Photonics Reviews 14, 1900098 (2020).
[3] Tan, T. et al. 2D material optoelectronics for information functional device applications: status and challenges. Advanced Science 7, 2000058 (2020). doi: 10.1002/advs.202000058
[4] Zheng, J. L. et al. Few-layer phosphorene-decorated microfiber for all-optical thresholding and optical modulation. Advanced Optical Materials 5, 1700026 (2017). doi: 10.1002/adom.201700026
[5] Wang, Y. Z. et al. All-optical phosphorene phase modulator with enhanced stability under ambient conditions. Laser & Photonics Reviews 12, 1800016 (2018).
[6] Wang, Y. Z. et al. An all-optical, actively Q-switched fiber laser by an antimonene-based optical modulator. Laser & Photonics Reviews 13, 1800313 (2019).
[7] Hu, T. et al. Silicon photonic platforms for mid-infrared applications. Photonics Research 5, 417-430 (2017). doi: 10.1364/PRJ.5.000417
[8] Herrmann, E. et al. Modulators for mid-infrared and terahertz light. Journal of Applied Physics 128, 140903 (2020). doi: 10.1063/5.0025032
[9] Jacobsen, R. S. et al. Strained silicon as a new electro-optic material. Nature 441, 199-202 (2006). doi: 10.1038/nature04706
[10] Malik, A. et al. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Optics Express 22, 28479-28488 (2014). doi: 10.1364/OE.22.028479
[11] Thomson, D. J. et al. Optical detection and modulation at 2µm-2.5µm in silicon. Optics Express 22, 10825-10830 (2014). doi: 10.1364/OE.22.010825
[12] Lin, H. T. et al. Chalcogenide glass-on-graphene photonics. Nature Photonics 11, 798-805 (2017). doi: 10.1038/s41566-017-0033-z
[13] Nedeljkovic, M. et al. Mid-infrared thermo-optic modulators in SoI. IEEE Photonics Technology Letters 26, 1352-1355 (2014). doi: 10.1109/LPT.2014.2323702
[14] Chiles, J. & Fathpour, S. Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics. Optica 1, 350-355 (2014). doi: 10.1364/OPTICA.1.000350
[15] Kitamura, R., Pilon, L. & Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics 46, 8118-8133 (2007). doi: 10.1364/AO.46.008118
[16] Yao, Y. et al. Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Letters 13, 1257-1264 (2013). doi: 10.1021/nl3047943
[17] Zeng, B. B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light:Science & Applications 7, 51 (2018).
[18] Li, Z. Y. & Yu, N. F. Modulation of mid-infrared light using graphene-metal plasmonic antennas. Applied Physics Letters 102, 131108 (2013). doi: 10.1063/1.4800931
[19] Jin, W. et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nature Communications 6, 6767 (2015). doi: 10.1038/ncomms7767
[20] Zhao, P. C. et al. Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber. Nature Communications 11, 847 (2020). doi: 10.1038/s41467-020-14707-0
[21] Chen, F. F. et al. Ethane detection with mid-infrared hollow-core fiber photothermal spectroscopy. Optics Express 28, 38115-38126 (2020). doi: 10.1364/OE.410927
[22] Zhao, Y. et al. Photoacoustic Brillouin spectroscopy of gas-filled anti-resonant hollow-core optical fibers. Optica 8, 532-538 (2021). doi: 10.1364/OPTICA.417235
[23] Zhao, P. C. et al. Hollow-core fiber photothermal methane sensor with temperature compensation. Optics Letters 46, 2762-2765 (2021). doi: 10.1364/OL.426812
[24] Gao, S. F. , Wang, Y. Y. & Wang, P. Silica-based modeless hollow-core fiber for broadband mid-IR guidance. Conference on Lasers and Electro-Optics Pacific Rim. Singapore: IEEE, 2017.
[25] Cao, L. et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber. Optics Express 26, 5609-5615 (2018). doi: 10.1364/OE.26.005609
[26] Krzempek, K. et al. Antiresonant hollow core fiber-assisted photothermal spectroscopy of nitric oxide at 5.26 μm with parts-per-billion sensitivity. Sensors and Actuators B: Chemical 345, 130374-7258 (2021). doi: 10.1364/AO.31.007253
[27] Jin, W. , Uttamchandani, D. & Culshaw, B. Direct readout of dynamic phase changes in a fiber-optic homodyne interferometer. Applied Optics 31, 7253-7258 (1992).
[28] Jiang, S. L. et al. Broadband all-fiber optical phase modulator based on photo-thermal effect in a gas-filled hollow-core fiber. Opto-Electronic Advances 6, 220085 (2023).
[29] Black, E. D. An introduction to Pound-Drever-Hall laser frequency stabilization. American Journal of Physics 69, 79-87 (2001). doi: 10.1119/1.1286663
[30] Gan, X. T. et al. Graphene-assisted all-fiber phase shifter and switching. Optica 2, 468-471 (2015). doi: 10.1364/OPTICA.2.000468
[31] QUBIG GmbH. at https://www.qubig.com/ URL.
[32] Li, T. T. et al. Ge-on-Si modulators operating at mid-infrared wavelengths up to 8 μm. Photonics Research 7, 828-836 (2019). doi: 10.1364/PRJ.7.000828
[33] Shen, L. et al. Mid-infrared all-optical modulation in low-loss germanium-on-silicon waveguides. Optics Letters 40, 268-271 (2015). doi: 10.1364/OL.40.000268
[34] Mulvad, H. C. H. et al. Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre. Nature Photonics 16, 448-453 (2022). doi: 10.1038/s41566-022-01000-3
[35] Yang, H. Y. et al. All-optical modulation technology based on 2D layered materials. Micromachines 13, 92 (2022). doi: 10.3390/mi13010092
[36] Wu, L. M. et al. Recent advances of spatial self-phase modulation in 2D materials and passive photonic device applications. Small 16, 2002252 (2020). doi: 10.1002/smll.202002252