[1] Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nature Photonics 14, 623-628 (2020). doi: 10.1038/s41566-020-0658-1
[2] High, A. A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192-196 (2015). doi: 10.1038/nature14477
[3] Brongersma, M. L., Cui, Y. & Fan, S. H. Light management for photovoltaics using high-index nanostructures. Nature Materials 13, 451-460 (2014). doi: 10.1038/nmat3921
[4] Wei, D. Z. et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nature Photonics 12, 596-600 (2018). doi: 10.1038/s41566-018-0240-2
[5] Ma, W. et al. Deep learning for the design of photonic structures. Nature Photonics 15, 77-90 (2021). doi: 10.1038/s41566-020-0685-y
[6] Savin, H. et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. Nature Nanotechnology 10, 624-628 (2015).
[7] Abid, M. I. et al. Angle-multiplexed optical printing of biomimetic hierarchical 3D textures. Laser & Photonics Reviews 11, 1600187 (2017).
[8] Wu, S. W. et al. Bio-inspired anti-icing surface materials. in Ice Adhesion: Mechanism, Measurement and Mitigation (eds Mittal, K. L. & Choi, C. H. ) (Hoboken: Wiley-Scrivener, 2020).
[9] Kerse, C. et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84-88 (2016). doi: 10.1038/nature18619
[10] Öktem, B. et al. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nature Photonics 7, 897-901 (2013). doi: 10.1038/nphoton.2013.272
[11] Wang, L. et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light: Science & Applications 6, e17112 (2017).
[12] Yang, J. et al. Design and fabrication of broadband ultralow reflectivity black Si surfaces by laser micro/nanoprocessing. Light: Science & Applications 3, e185 (2014).
[13] Chong, T. C., Hong, M. H. & Shi, L. P. Laser precision engineering: from microfabrication to nanoprocessing. Laser & Photonics Reviews 4, 123-143 (2010).
[14] Zhao, J. H. et al. Ultrafast laser-induced black silicon, from micro-nanostructuring, infrared absorption mechanism, to high performance detecting devices. Materials Today Nano 11, 100078 (2020). doi: 10.1016/j.mtnano.2020.100078
[15] Sun, K. et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307-310 (2022). doi: 10.1126/science.abj2691
[16] Wang, Z. et al. 3D imprinting of voxel-level structural colors in lithium niobate crystal. Advanced Materials 35, 2303256 (2023).
[17] Li, Z. Z. et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light: Science & Applications 9, 41 (2020).
[18] Jiang, L. et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light: Science & Applications 7, 17134 (2018).
[19] Huang, M. et al. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062-4070 (2009). doi: 10.1021/nn900654v
[20] Wang, L. et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 4, 637-642 (2017). doi: 10.1364/OPTICA.4.000637
[21] Bonse, J. & Gräf, S. Maxwell meets marangoni—a review of theories on laser-induced periodic surface structures. Laser & Photonics Reviews 14, 2000215 (2020).
[22] Li, Z. Z. et al. Super stealth dicing of transparent solids with nanometric precision. Nature Photonics (2024).
[23] Zhu, J. et al. MXene V2CTx nanosheet/bismuth quantum dot-based heterostructures for enhanced flexible photodetection and nonlinear photonics. ACS Applied Nano Materials 6, 13629-13636 (2023).
[24] Huang, W. C. et al. Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications. Advanced Functional Materials 31, 2007584 (2021). doi: 10.1002/adfm.202007584
[25] Huang, W. C. et al. Recent advances in semiconducting monoelemental selenium nanostructures for device applications. Advanced Functional Materials 30, 2003301 (2020). doi: 10.1002/adfm.202003301
[26] Huang, W. C. et al. Enhanced photodetection properties of tellurium@selenium roll-to-roll nanotube heterojunctions. Small 15, 1900902 (2019). doi: 10.1002/smll.201900902
[27] Kanasaki, J. et al. Dynamical interaction of surface electron-hole pairs with surface defects: surface spectroscopy monitored by particle emissions. Physical Review Letters 70, 2495-2498 (1993). doi: 10.1103/PhysRevLett.70.2495
[28] Pankratov, O. & Scheffler, M. Localized excitons and breaking of chemical bonds at III-V (110) surfaces. Physical Review Letters 75, 701-704 (1995). doi: 10.1103/PhysRevLett.75.701
[29] Chen, N. K. et al. Directional forces by momentumless excitation and order-to-order transition in peierls-distorted solids: the case of GeTe. Physical Review Letters 120, 185701 (2018). doi: 10.1103/PhysRevLett.120.185701
[30] Wang, D. et al. Engineering two-dimensional electronics by semiconductor defects. Nano Today 16, 30-45 (2017). doi: 10.1016/j.nantod.2017.07.001
[31] Zhao, Z. Y. et al. Optical absorption and photocurrent enhancement in semi-insulating gallium arsenide by femtosecond laser pulse surface microstructuring. Optics Express 22, 11654-11659 (2014). doi: 10.1364/OE.22.011654
[32] Majumdar, D. et al. Laser induced photothermal effects on InAs nanowires: tuning the hole density. Journal of Materials Chemistry C 4, 2339-2344 (2016). doi: 10.1039/C5TC03731J
[33] Neto, A. P. et al. Photoacoustic characterization of semiconductors: transport properties and thermal diffusivity in GaAs and Si. Physical Review B 41, 9971-9979 (1990). doi: 10.1103/PhysRevB.41.9971
[34] Soltanolkotabi, M., Bennis, G. L. & Gupta, R. Temperature dependence of the thermal diffusivity of GaAs in the 100-305 K range measured by the pulsed photothermal displacement technique. Journal of Applied Physics 85, 794-798 (1999). doi: 10.1063/1.369161
[35] Bertolotti, M. et al. New photothermal deflection method for thermal diffusivity measurement of semiconductor wafers. Review of Scientific Instruments 68, 1521-1526 (1997). doi: 10.1063/1.1147589
[36] Sun, Y. G. et al. Nanophase evolution at semiconductor/electrolyte interface in situ probed by time-resolved high-energy synchrotron X-ray diffraction. Nano Letters 10, 3747-3753 (2010). doi: 10.1021/nl102458k
[37] Sun, Y. G. Synthesis of Ag nanoplates on GaAs wafers: evidence for growth mechanism. The Journal of Physical Chemistry C 114, 857-863 (2010).
[38] Sun, Y. G. Metal nanoplates on semiconductor substrates. Advanced Functional Materials 20, 3646-3657 (2010). doi: 10.1002/adfm.201001336
[39] Xu, B. B. et al. Surface-plasmon-mediated programmable optical nanofabrication of an oriented silver nanoplate. ACS Nano 8, 6682-6692 (2014). doi: 10.1021/nn5029345
[40] Buividas, R. et al. Novel method to determine the actual surface area of a laser-nanotextured sensor. Applied Physics A 114, 169-175 (2014). doi: 10.1007/s00339-013-8129-x
[41] Liu, L. et al. Role of graphene in constructing multilayer plasmonic SERS substrate with graphene/AgNPs as chemical mechanism—electromagnetic mechanism unit. Nanomaterials 10, 2371 (2020). doi: 10.3390/nano10122371