[1] |
Ni, J. C. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021). doi: 10.1126/science.abj0039 |
[2] |
Cotrufo, M. et al. Polarization imaging and edge detection with image-processing metasurfaces. Optica 10, 1331-1338 (2023). doi: 10.1364/OPTICA.500121 |
[3] |
Zhang, Y. Z. et al. Dielectric metasurface for synchronously spiral phase contrast and bright-field imaging. Nano Letters 23, 2991-2997 (2023). doi: 10.1021/acs.nanolett.3c00388 |
[4] |
Badloe, T. et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano 17, 14678-14685 (2023). doi: 10.1021/acsnano.3c02471 |
[5] |
Huo, P. C. et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Letters 20, 2791-2798 (2020). doi: 10.1021/acs.nanolett.0c00471 |
[6] |
Tang, P. et al. Polarization-independent edge detection based on the spin–orbit interaction of light. Optics Express 32, 17560-17570 (2024). doi: 10.1364/OE.521661 |
[7] |
Zhang, J. et al. All-optical image edge detection based on the two-dimensional photonic spin Hall effect in anisotropic metamaterial. Optics Express 31, 6062-6075 (2023). doi: 10.1364/OE.476492 |
[8] |
He, S. S. et al. Spatial differential operation and edge detection based on the geometric spin Hall effect of light. Optics Letters 45, 877-880 (2020). doi: 10.1364/OL.386224 |
[9] |
Tang, M. Y. et al. Polarization-independent liquid-crystal phase modulator with multi-microdomain orthogonally twisted photoalignment. Light: Advanced Manufacturing 4, 404-409 (2024). |
[10] |
Shanmugam, P. et al. Variable shearing holography with applications to phase imaging and metrology. Light: Advanced Manufacturing 3, 193-210 (2022). |
[11] |
Zhu, T. F. et al. Plasmonic computing of spatial differentiation. Nature Communications 8, 15391 (2017). doi: 10.1038/ncomms15391 |
[12] |
Liu, W. Z. et al. Topological polarization singularities in metaphotonics. Nanophotonics 10, 1469-1486 (2021). doi: 10.1515/nanoph-2020-0654 |
[13] |
Zeng, Y. X. et al. Dynamics of topological polarization singularity in momentum space. Physical Review Letters 127, 176101 (2021). doi: 10.1103/PhysRevLett.127.176101 |
[14] |
Hsu, C. W. et al. Bound states in the continuum. Nature Reviews Materials 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48 |
[15] |
Wang, J. J. et al. Optical bound states in the continuum in periodic structures: mechanisms, effects, and applications. Photonics Insights 3, R01 (2024). doi: 10.3788/PI.2024.R01 |
[16] |
Kang, M. et al. Applications of bound states in the continuum in photonics. Nature Reviews Physics (2023). |
[17] |
Zhou, C. B. et al. Bound states in the continuum in asymmetric dielectric metasurfaces. Laser & Photonics Reviews 17, 2200564 (2023). |
[18] |
Al-Ani, I. A. M. et al. Enhanced strong coupling of TMDC monolayers by bound state in the continuum. Laser & Photonics Reviews 15, 2100240 (2021). |
[19] |
Huang, L. J. et al. Realizing ultrahigh-Q resonances through harnessing symmetry-protected bound states in the continuum. Advanced Functional Materials 34, 2309982 (2024). doi: 10.1002/adfm.202309982 |
[20] |
Zhao, W. Z. et al. Evolution of degenerate pairs of bound states in the continuum with broken symmetry. IEEE Photonics Journal 16, 1-7 (2024). |
[21] |
Liu, W. Z. et al. Circularly polarized states spawning from bound states in the continuum. Physical Review Letters 123, 116104 (2019). doi: 10.1103/PhysRevLett.123.116104 |
[22] |
Wang, X. H. et al. Realizing tunable evolution of bound states in the continuum and circularly polarized points by symmetry breaking. ACS Photonics 10, 2316-2322 (2023). doi: 10.1021/acsphotonics.2c01522 |
[23] |
Han, S. et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum. Light: Science & Applications 12 , 145 (2023). |
[24] |
Park, J. S. et al. Optical nonlinearity in silicon nanowires enabled by bound states in the continuum. ACS Nano 17, 11729-11738 (2023). doi: 10.1021/acsnano.3c02558 |
[25] |
Jacobsen, R. E. et al. Boundary-induced embedded eigenstate in a single resonator for advanced sensing. ACS Photonics 9, 1936-1943 (2022). doi: 10.1021/acsphotonics.1c01840 |
[26] |
Zhang, X. et al. Chiral emission from resonant metasurfaces. Science 377, 1215-1218 (2022). doi: 10.1126/science.abq7870 |
[27] |
Shi, T. et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum. Nature Communications 13, 4111 (2022). doi: 10.1038/s41467-022-31877-1 |
[28] |
Yin, X. F. et al. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467-471 (2020). doi: 10.1038/s41586-020-2181-4 |
[29] |
Wang, J. J. et al. Shifting beams at normal incidence via controlling momentum-space geometric phases. Nature Communications 12, 6046 (2021). doi: 10.1038/s41467-021-26406-5 |
[30] |
Zhou, J. X. et al. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences 116, 11137-11140 (2019). doi: 10.1073/pnas.1820636116 |
[31] |
Fan, S. H. et al. Temporal coupled-mode theory for the Fano resonance in optical resonators. Journal of the Optical Society of America A 20, 569-572 (2003). doi: 10.1364/JOSAA.20.000569 |
[32] |
Limonov, M. F. et al. Fano resonances in photonics. Nature Photonics 11, 543-554 (2017). doi: 10.1038/nphoton.2017.142 |
[33] |
Zhou, W. D. et al. Progress in 2D photonic crystal Fano resonance photonics. Progress in Quantum Electronics 38, 1-74 (2014). doi: 10.1016/j.pquantelec.2014.01.001 |
[34] |
Fan, S. H. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Physical Review B 65, 235112 (2002). doi: 10.1103/PhysRevB.65.235112 |
[35] |
Lim, Y. et al. Maximally chiral emission via chiral quasibound states in the continuum. Laser & Photonics Reviews 17, 2200611 (2023). |
[36] |
Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum. Nature 613, 474-478 (2023). doi: 10.1038/s41586-022-05467-6 |
[37] |
Shastri, K. & Monticone, F. Nonlocal flat optics. Nature Photonics 17, 36-47 (2023). doi: 10.1038/s41566-022-01098-5 |
[38] |
Zangeneh-Nejad, F. et al. Analogue computing with metamaterials. Nature Reviews Materials 6, 207-225 (2021). |
[39] |
Zhou, Y. et al. Multiresonant nonlocal metasurfaces. Nano Letters 23, 6768-6775 (2023). doi: 10.1021/acs.nanolett.3c00772 |
[40] |
Zhao, M. X. et al. Phase characterisation of metalenses. Light: Science & Applications 10 , 52 (2021). |