[1] |
Cakmakci, O. & Rolland, J. Head-worn displays: a review. J. Disp. Technol. 2, 199-216 (2006). doi: 10.1109/JDT.2006.879846 |
[2] |
Zhan, T. et al. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23, 101397 (2020). doi: 10.1016/j.isci.2020.101397 |
[3] |
Rendon, A. A. et al. The effect of virtual reality gaming on dynamic balance in older adults. Age Ageing 41, 549-552 (2012). doi: 10.1093/ageing/afs053 |
[4] |
Choi, S., Jung, K. & Noh, S. D. Virtual reality applications in manufacturing industries: past research, present findings, and future directions. Concurrent Eng. 23, 40-63 (2015). doi: 10.1177/1063293X14568814 |
[5] |
Li, X. et al. A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Autom. Constr. 86, 150-162 (2018). doi: 10.1016/j.autcon.2017.11.003 |
[6] |
Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Bellingham: SPIE Press, 2020). |
[7] |
Cholewiak, S. A. et al. A perceptual eyebox for near-eye displays. Opt. Express 28, 38008-38028 (2020). doi: 10.1364/OE.408404 |
[8] |
Lee, Y. H., Zhan, T. & Wu, S. T. Prospects and challenges in augmented reality displays. Virtual Real. Intell. Hardw. 1, 10-20 (2019). doi: 10.3724/SP.J.2096-5796.2018.0009 |
[9] |
Kim, J. et al. Foveated AR: dynamically-foveated augmented reality display. ACM Trans. Graph. 38, 99 (2019). |
[10] |
Tan, G. J. et al. Foveated imaging for near-eye displays. Opt. Express 26, 25076-25085 (2018). doi: 10.1364/OE.26.025076 |
[11] |
Lee, S. et al. Foveated near-eye display for mixed reality using liquid crystal photonics. Sci. Rep. 10, 16127 (2020). doi: 10.1038/s41598-020-72555-w |
[12] |
Yoo, C. et al. Foveated display system based on a doublet geometric phase lens. Opt. Express 28, 23690-23702 (2020). doi: 10.1364/OE.399808 |
[13] |
Akşit, K. et al. Manufacturing application-driven foveated near-eye displays. IEEE Trans. Vis. Computer Graph. 25, 1928-1939 (2019). doi: 10.1109/TVCG.2019.2898781 |
[14] |
Zhu, R. D. et al. High-ambient-contrast augmented reality with a tunable transmittance liquid crystal film and a functional reflective polarizer. J. Soc. Inf. Disp. 24, 229-233 (2016). doi: 10.1002/jsid.427 |
[15] |
Lincoln, P. et al. Scene-adaptive high dynamic range display for low latency augmented reality. In Proc. 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. (ACM, San Francisco, CA, 2017). |
[16] |
Duerr, F. & Thienpont, H. Freeform imaging systems: fermat's principle unlocks "first time right" design. Light. : Sci. Appl. 10, 95 (2021). doi: 10.1038/s41377-021-00538-1 |
[17] |
Bauer, A., Schiesser, E. M. & Rolland, J. P. Starting geometry creation and design method for freeform optics. Nat. Commun. 9, 1756 (2018). doi: 10.1038/s41467-018-04186-9 |
[18] |
Rolland, J. P. et al. Freeform optics for imaging. Optica 8, 161-176 (2021). doi: 10.1364/OPTICA.413762 |
[19] |
Jang, C. et al. Design and fabrication of freeform holographic optical elements. ACM Trans. Graph. 39, 184 (2020). doi: 10.1145/3414685.3417762 |
[20] |
Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0 |
[21] |
Kostuk, R. K. Holography: Principles and Applications (Boca Raton: CRC Press, 2019). |
[22] |
Lawrence, J. R., O'Neill, F. T. & Sheridan, J. T. Photopolymer holographic recording material. Optik 112, 449-463 (2001). doi: 10.1078/0030-4026-00091 |
[23] |
Guo, J. X., Gleeson, M. R. & Sheridan, J. T. A review of the optimisation of photopolymer materials for holographic data storage. Phys. Res. Int. 2012, 803439 (2012). doi: 10.1155/2012/803439 |
[24] |
Jang, C. et al. Recent progress in see-through three-dimensional displays using holographic optical elements [Invited]. Appl. Opt. 55, A71-A85 (2016). doi: 10.1364/AO.55.000A71 |
[25] |
Xiong, J. H. et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Adv. Photonics Res. 2, 2000049 (2021). doi: 10.1002/adpr.202000049 |
[26] |
Tabiryan, N. V. et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv. Optical Mater. 9, 2001692 (2021). doi: 10.1002/adom.202001692 |
[27] |
Zanutta, A. et al. Photopolymeric films with highly tunable refractive index modulation for high precision diffractive optics. Optical Mater. Express 6, 252-263 (2016). doi: 10.1364/OME.6.000252 |
[28] |
Moharam, M. G. & Gaylord, T. K. Rigorous coupled-wave analysis of planar-grating diffraction. J. Optical Soc. Am. 71, 811-818 (1981). doi: 10.1364/JOSA.71.000811 |
[29] |
Xiong, J. H. & Wu, S. T. Rigorous coupled-wave analysis of liquid crystal polarization gratings. Opt. Express 28, 35960-35971 (2020). doi: 10.1364/OE.410271 |
[30] |
Xie, S., Natansohn, A. & Rochon, P. Recent developments in aromatic azo polymers research. Chem. Mater. 5, 403-411 (1993). doi: 10.1021/cm00028a003 |
[31] |
Shishido, A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym. J. 42, 525-533 (2010). doi: 10.1038/pj.2010.45 |
[32] |
Bunning, T. J. et al. Holographic polymer-dispersed liquid crystals (H-PDLCs). Annu. Rev. Mater. Sci. 30, 83-115 (2000). doi: 10.1146/annurev.matsci.30.1.83 |
[33] |
Liu, Y. J. & Sun, X. W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications. Adv. Optoelectron. 2008, 684349 (2008). doi: 10.1155/2008/684349 |
[34] |
Xiong, J. H. & Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x |
[35] |
Yaroshchuk, O. & Reznikov, Y. Photoalignment of liquid crystals: basics and current trends. J. Mater. Chem. 22, 286-300 (2012). doi: 10.1039/C1JM13485J |
[36] |
Sarkissian, H. et al. Periodically aligned liquid crystal: potential application for projection displays. Mol. Cryst. Liq. Cryst. 451, 1-19 (2006). doi: 10.1080/154214090959957 |
[37] |
Komanduri, R. K. & Escuti, M. J. Elastic continuum analysis of the liquid crystal polarization grating. Phys. Rev. E 76, 021701 (2007). doi: 10.1103/PhysRevE.76.021701 |
[38] |
Kobashi, J., Yoshida, H. & Ozaki, M. Planar optics with patterned chiral liquid crystals. Nat. Photonics 10, 389-392 (2016). doi: 10.1038/nphoton.2016.66 |
[39] |
Lee, Y. H., Yin, K. & Wu, S. T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. Opt. Express 25, 27008-27014 (2017). doi: 10.1364/OE.25.027008 |
[40] |
Lee, Y. H., He, Z. Q. & Wu, S. T. Optical properties of reflective liquid crystal polarization volume gratings. J. Optical Soc. Am. B 36, D9-D12 (2019). doi: 10.1364/JOSAB.36.0000D9 |
[41] |
Xiong, J. H., Chen, R. & Wu, S. T. Device simulation of liquid crystal polarization gratings. Opt. Express 27, 18102-18112 (2019). doi: 10.1364/OE.27.018102 |
[42] |
Czapla, A. et al. Long-period fiber gratings with low-birefringence liquid crystal. Mol. Cryst. Liq. Cryst. 502, 65-76 (2009). doi: 10.1080/15421400902815712 |
[43] |
Dąbrowski, R., Kula, P. & Herman, J. High birefringence liquid crystals. Crystals 3, 443-482 (2013). doi: 10.3390/cryst3030443 |
[44] |
Mack, C. Fundamental Principles of Optical Lithography: The Science of Microfabrication (Chichester: John Wiley & Sons, 2007). |
[45] |
Genevet, P. et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139-152 (2017). doi: 10.1364/OPTICA.4.000139 |
[46] |
Guo, L. J. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19, 495-513 (2007). doi: 10.1002/adma.200600882 |
[47] |
Park, J. et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses. Nat. Photonics 15, 449-455 (2021). doi: 10.1038/s41566-021-00783-1 |
[48] |
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190-1194 (2016). doi: 10.1126/science.aaf6644 |
[49] |
Li, S. Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087-1090 (2019). doi: 10.1126/science.aaw6747 |
[50] |
Liang, K. L. et al. Advances in color-converted micro-LED arrays. Jpn. J. Appl. Phys. 60, SA0802 (2020). doi: 10.35848/1347-4065/abba0f |
[51] |
Jin, S. X. et al. GaN microdisk light emitting diodes. Appl. Phys. Lett. 76, 631-633 (2000). doi: 10.1063/1.125841 |
[52] |
Day, J. et al. Full-scale self-emissive blue and green microdisplays based on GaN micro-LED arrays. In Proc. SPIE 8268, Quantum Sensing and Nanophotonic Devices IX (SPIE, San Francisco, California, United States, 2012). |
[53] |
Huang, Y. G. et al. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light. : Sci. Appl. 9, 105 (2020). doi: 10.1038/s41377-020-0341-9 |
[54] |
Parbrook, P. J. et al. Micro-light emitting diode: from chips to applications. Laser Photonics Rev. 15, 2000133 (2021). doi: 10.1002/lpor.202000133 |
[55] |
Day, J. et al. Ⅲ-Nitride full-scale high-resolution microdisplays. Appl. Phys. Lett. 99, 031116 (2011). doi: 10.1063/1.3615679 |
[56] |
Liu, Z. J. et al. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. J. Disp. Technol. 9, 678-682 (2013). doi: 10.1109/JDT.2013.2238215 |
[57] |
Zhang, L. et al. Wafer-scale monolithic hybrid integration of Si-based IC and Ⅲ-Ⅴ epi-layers—A mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 26, 137-145 (2018). doi: 10.1002/jsid.649 |
[58] |
Tian, P. F. et al. Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes. Appl. Phys. Lett. 101, 231110 (2012). doi: 10.1063/1.4769835 |
[59] |
Olivier, F. et al. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: a size effect study. Appl. Phys. Lett. 111, 022104 (2017). doi: 10.1063/1.4993741 |
[60] |
Konoplev, S. S., Bulashevich, K. A. & Karpov, S. Y. From large-size to micro-LEDs: scaling trends revealed by modeling. Phys. Status Solidi (A) 215, 1700508 (2018). doi: 10.1002/pssa.201700508 |
[61] |
Li, L. Z. et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays. Proc. Natl Acad. Sci. USA 118, e2023436118 (2021). doi: 10.1073/pnas.2023436118 |
[62] |
Oh, J. T. et al. Light output performance of red AlGaInP-based light emitting diodes with different chip geometries and structures. Opt. Express 26, 11194-11200 (2018). doi: 10.1364/OE.26.011194 |
[63] |
Shen, Y. C. et al. Auger recombination in InGaN measured by photoluminescence. Appl. Phys. Lett. 91, 141101 (2007). doi: 10.1063/1.2785135 |
[64] |
Wong, M. S. et al. High efficiency of Ⅲ-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt. Express 26, 21324-21331 (2018). doi: 10.1364/OE.26.021324 |
[65] |
Han, S. C. et al. AlGaInP-based Micro-LED array with enhanced optoelectrical properties. Optical Mater. 114, 110860 (2021). doi: 10.1016/j.optmat.2021.110860 |
[66] |
Wong, M. S. et al. Size-independent peak efficiency of Ⅲ-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation. Appl. Phys. Express 12, 097004 (2019). doi: 10.7567/1882-0786/ab3949 |
[67] |
Ley, R. T. et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl. Phys. Lett. 116, 251104 (2020). doi: 10.1063/5.0011651 |
[68] |
Moon, S. W. et al. Recent progress on ultrathin metalenses for flat optics. iScience 23, 101877 (2020). doi: 10.1016/j.isci.2020.101877 |
[69] |
Arbabi, A. et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers. Opt. Express 23, 33310-33317 (2015). doi: 10.1364/OE.23.033310 |
[70] |
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333-337 (2011). doi: 10.1126/science.1210713 |
[71] |
Liang, H. W. et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs. Optica 6, 1461-1470 (2019). doi: 10.1364/OPTICA.6.001461 |
[72] |
Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19, 8673-8682 (2019). doi: 10.1021/acs.nanolett.9b03333 |
[73] |
Yoon, G. et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020). doi: 10.1038/s41467-020-16136-5 |
[74] |
Lee, G. Y. et al. Metasurface eyepiece for augmented reality. Nat. Commun. 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5 |
[75] |
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220-226 (2018). doi: 10.1038/s41565-017-0034-6 |
[76] |
Wang, S. M. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227-232 (2018). doi: 10.1038/s41565-017-0052-4 |
[77] |
Lan, S. F. et al. Metasurfaces for near-eye augmented reality. ACS Photonics 6, 864-870 (2019). doi: 10.1021/acsphotonics.9b00180 |
[78] |
Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light. : Sci. Appl. 8, 67 (2019). doi: 10.1038/s41377-019-0178-2 |
[79] |
Shi, Z. J., Chen, W. T. & Capasso, F. Wide field-of-view waveguide displays enabled by polarization-dependent metagratings. In Proc. SPIE 10676, Digital Optics for Immersive Displays (SPIE, Strasbourg, France, 2018). |
[80] |
Hong, C. C., Colburn, S. & Majumdar, A. Flat metaform near-eye visor. Appl. Opt. 56, 8822-8827 (2017). doi: 10.1364/AO.56.008822 |
[81] |
Bayati, E. et al. Design of achromatic augmented reality visors based on composite metasurfaces. Appl. Opt. 60, 844-850 (2021). doi: 10.1364/AO.410895 |
[82] |
Nikolov, D. K. et al. Metaform optics: bridging nanophotonics and freeform optics. Sci. Adv. 7, eabe5112 (2021). doi: 10.1126/sciadv.abe5112 |
[83] |
Tamir, T. & Peng, S. T. Analysis and design of grating couplers. Appl. Phys. 14, 235-254 (1977). doi: 10.1007/BF00882729 |
[84] |
Miller, J. M. et al. Design and fabrication of binary slanted surface-relief gratings for a planar optical interconnection. Appl. Opt. 36, 5717-5727 (1997). doi: 10.1364/AO.36.005717 |
[85] |
Levola, T. & Laakkonen, P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Opt. Express 15, 2067-2074 (2007). doi: 10.1364/OE.15.002067 |
[86] |
Shrestha, S. et al. Broadband achromatic dielectric metalenses. Light. : Sci. Appl. 7, 85 (2018). doi: 10.1038/s41377-018-0078-x |
[87] |
Li, Z. Y. et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 7, eabe4458 (2021). doi: 10.1126/sciadv.abe4458 |
[88] |
Ratcliff, J. et al. ThinVR: heterogeneous microlens arrays for compact, 180 degree FOV VR near-eye displays. IEEE Trans. Vis. Computer Graph. 26, 1981-1990 (2020). doi: 10.1109/TVCG.2020.2973064 |
[89] |
Wong, T. L. et al. Folded optics with birefringent reflective polarizers. In Proc. SPIE 10335, Digital Optical Technologies 2017 (SPIE, Munich, Germany, 2017). |
[90] |
Li, Y. N. Q. et al. Broadband cholesteric liquid crystal lens for chromatic aberration correction in catadioptric virtual reality optics. Opt. Express 29, 6011-6020 (2021). doi: 10.1364/OE.419595 |
[91] |
Bang, K. et al. Lenslet VR: thin, flat and wide-FOV virtual reality display using fresnel lens and lenslet array. IEEE Trans. Vis. Computer Graph. 27, 2545-2554 (2021). doi: 10.1109/TVCG.2021.3067758 |
[92] |
Maimone, A. & Wang, J. R. Holographic optics for thin and lightweight virtual reality. ACM Trans. Graph. 39, 67 (2020). doi: 10.1145/3386569.3392416 |
[93] |
Kramida, G. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Trans. Vis. Computer Graph. 22, 1912-1931 (2016). doi: 10.1109/TVCG.2015.2473855 |
[94] |
Zhan, T. et al. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0 |
[95] |
Shimobaba, T., Kakue, T. & Ito, T. Review of fast algorithms and hardware implementations on computer holography. IEEE Trans. Ind. Inform. 12, 1611-1622 (2016). doi: 10.1109/TII.2015.2509452 |
[96] |
Xiao, X. et al. Advances in three-dimensional integral imaging: sensing, display, and applications [Invited]. Appl. Opt. 52, 546-560 (2013). doi: 10.1364/AO.52.000546 |
[97] |
Kuiper, S. & Hendriks, B. H. W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128-1130 (2004). doi: 10.1063/1.1779954 |
[98] |
Liu, S. & Hua, H. Time-multiplexed dual-focal plane head-mounted display with a liquid lens. Opt. Lett. 34, 1642-1644 (2009). doi: 10.1364/OL.34.001642 |
[99] |
Wilson, A. & Hua, H. Design and demonstration of a vari-focal optical see-through head-mounted display using freeform Alvarez lenses. Opt. Express 27, 15627-15637 (2019). doi: 10.1364/OE.27.015627 |
[100] |
Zhan, T. et al. Pancharatnam-Berry optical elements for head-up and near-eye displays [Invited]. J. Optical Soc. Am. B 36, D52-D65 (2019). doi: 10.1364/JOSAB.36.000D52 |
[101] |
Oh, C. & Escuti, M. J. Achromatic diffraction from polarization gratings with high efficiency. Opt. Lett. 33, 2287-2289 (2008). doi: 10.1364/OL.33.002287 |
[102] |
Zou, J. Y. et al. Broadband wide-view Pancharatnam-Berry phase deflector. Opt. Express 28, 4921-4927 (2020). doi: 10.1364/OE.385540 |
[103] |
Zhan, T., Lee, Y. H. & Wu, S. T. High-resolution additive light field near-eye display by switchable Pancharatnam-Berry phase lenses. Opt. Express 26, 4863-4872 (2018). doi: 10.1364/OE.26.004863 |
[104] |
Tan, G. J. et al. Polarization-multiplexed multiplane display. Opt. Lett. 43, 5651-5654 (2018). doi: 10.1364/OL.43.005651 |
[105] |
Lanman, D. R. Display systems research at facebook reality labs (conference presentation). In Proc. SPIE 11310, Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) (SPIE, San Francisco, California, United States, 2020). |
[106] |
Liu, Z. J. et al. A novel BLU-free full-color LED projector using LED on silicon micro-displays. IEEE Photonics Technol. Lett. 25, 2267-2270 (2013). doi: 10.1109/LPT.2013.2285229 |
[107] |
Han, H. V. et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 23, 32504-32515 (2015). doi: 10.1364/OE.23.032504 |
[108] |
Lin, H. Y. et al. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photonics Res. 5, 411-416 (2017). doi: 10.1364/PRJ.5.000411 |
[109] |
Liu, Z. J. et al. Micro-light-emitting diodes with quantum dots in display technology. Light. : Sci. Appl. 9, 83 (2020). doi: 10.1038/s41377-020-0268-1 |
[110] |
Kim, H. M. et al. Ten micrometer pixel, quantum dots color conversion layer for high resolution and full color active matrix micro-LED display. J. Soc. Inf. Disp. 27, 347-353 (2019). doi: 10.1002/jsid.782 |
[111] |
Xuan, T. T. et al. Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. J. Phys. Chem. Lett. 11, 5184-5191 (2020). doi: 10.1021/acs.jpclett.0c01451 |
[112] |
Chen, S. W. H. et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res. 7, 416-422 (2019). doi: 10.1364/PRJ.7.000416 |
[113] |
Krishnan, C. et al. Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3, 503-509 (2016). doi: 10.1364/OPTICA.3.000503 |
[114] |
Kang, J. H. et al. RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots. ACS Applied Mater. Interfaces 12, 30890-30895 (2020). doi: 10.1021/acsami.0c00839 |
[115] |
Chen, G. S. et al. Monolithic red/green/blue micro-LEDs with HBR and DBR structures. IEEE Photonics Technol. Lett. 30, 262-265 (2018). doi: 10.1109/LPT.2017.2786737 |
[116] |
Hsiang, E. L. et al. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film. Nanomaterials 10, 2430 (2020). doi: 10.3390/nano10122430 |
[117] |
Kang, C. M. et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding. ACS Photonics 5, 4413-4422 (2018). doi: 10.1021/acsphotonics.8b00876 |
[118] |
Geum, D. M. et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11, 23139-23148 (2019). doi: 10.1039/C9NR04423J |
[119] |
Ra, Y. H. et al. Full-color single nanowire pixels for projection displays. Nano Lett. 16, 4608-4615 (2016). doi: 10.1021/acs.nanolett.6b01929 |
[120] |
Motoyama, Y. et al. High-efficiency OLED microdisplay with microlens array. J. Soc. Inf. Disp. 27, 354-360 (2019). doi: 10.1002/jsid.784 |
[121] |
Fujii, T. et al. 4032 ppi High-resolution OLED microdisplay. J. Soc. Inf. Disp. 26, 178-186 (2018). doi: 10.1002/jsid.656 |
[122] |
Hamer, J. et al. High-performance OLED microdisplays made with multi-stack OLED formulations on CMOS backplanes. In Proc. SPIE 11473, Organic and Hybrid Light Emitting Materials and Devices XXIV. Online Only (SPIE, 2020). |
[123] |
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459-463 (2020). doi: 10.1126/science.abc8530 |
[124] |
Vettese, D. Liquid crystal on silicon. Nat. Photonics 4, 752-754 (2010). doi: 10.1038/nphoton.2010.252 |
[125] |
Zhang, Z. C., You, Z. & Chu, D. P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light. : Sci. Appl. 3, e213 (2014). doi: 10.1038/lsa.2014.94 |
[126] |
Hornbeck, L. J. The DMDTM projection display chip: a MEMS-based technology. MRS Bull. 26, 325-327 (2001). doi: 10.1557/mrs2001.72 |
[127] |
Zhang, Q. et al. Polarization recycling method for light-pipe-based optical engine. Appl. Opt. 52, 8827-8833 (2013). doi: 10.1364/AO.52.008827 |
[128] |
Hofmann, U., Janes, J. & Quenzer, H. J. High-Q MEMS resonators for laser beam scanning displays. Micromachines 3, 509-528 (2012). doi: 10.3390/mi3020509 |
[129] |
Holmström, S. T. S., Baran, U. & Urey, H. MEMS laser scanners: a review. J. Microelectromechanical Syst. 23, 259-275 (2014). doi: 10.1109/JMEMS.2013.2295470 |
[130] |
Bao, X. Z. et al. Design and fabrication of AlGaInP-based micro-light-emitting-diode array devices. Opt. Laser Technol. 78, 34-41 (2016). doi: 10.1016/j.optlastec.2015.09.016 |
[131] |
Olivier, F. et al. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 191, 112-116 (2017). doi: 10.1016/j.jlumin.2016.09.052 |
[132] |
Liu, Y. B. et al. High-brightness InGaN/GaN Micro-LEDs with secondary peak effect for displays. IEEE Electron Device Lett. 41, 1380-1383 (2020). doi: 10.1109/LED.2020.3014435 |
[133] |
Qi, L. H. et al. 848 ppi high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production. Opt. Express 29, 10580-10591 (2021). doi: 10.1364/OE.419877 |
[134] |
Chen, E. G. & Yu, F. H. Design of an elliptic spot illumination system in LED-based color filter-liquid-crystal-on-silicon pico projectors for mobile embedded projection. Appl. Opt. 51, 3162-3170 (2012). doi: 10.1364/AO.51.003162 |
[135] |
Darmon, D., McNeil, J. R. & Handschy, M. A. 70.1: LED-illuminated pico projector architectures. Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 39, 1070-1073 (2008). doi: 10.1889/1.3069320 |
[136] |
Essaian, S. & Khaydarov, J. State of the art of compact green lasers for mobile projectors. Optical Rev. 19, 400-404 (2012). doi: 10.1007/s10043-012-0065-z |
[137] |
Sun, W. S. et al. Compact LED projector design with high uniformity and efficiency. Appl. Opt. 53, H227-H232 (2014). doi: 10.1364/AO.53.00H227 |
[138] |
Sun, W. S., Chiang, Y. C. & Tsuei, C. H. Optical design for the DLP pocket projector using LED light source. Phys. Procedia 19, 301-307 (2011). doi: 10.1016/j.phpro.2011.06.165 |
[139] |
Chen, S. W. H. et al. High-bandwidth green semipolar (20-21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 7, 2228-2235 (2020). doi: 10.1021/acsphotonics.0c00764 |
[140] |
Yoshida, K. et al. 245 MHz bandwidth organic light-emitting diodes used in a gigabit optical wireless data link. Nat. Commun. 11, 1171 (2020). doi: 10.1038/s41467-020-14880-2 |
[141] |
Park, D. W. et al. 53.5: High-speed AMOLED pixel circuit and driving scheme. Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 41, 806-809 (2010). doi: 10.1889/1.3500595 |
[142] |
Tan, L., Huang, H. C. & Kwok, H. S. 78.1: Ultra compact polarization recycling system for white light LED based pico-projection system. Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 41, 1159-1161 (2010). doi: 10.1889/1.3499873 |
[143] |
Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85 (2017). doi: 10.1145/3072959.3073624 |
[144] |
Pan, J. W. et al. Portable digital micromirror device projector using a prism. Appl. Opt. 46, 5097-5102 (2007). doi: 10.1364/AO.46.005097 |
[145] |
Huang, Y. et al. Liquid-crystal-on-silicon for augmented reality displays. Appl. Sci. 8, 2366 (2018). doi: 10.3390/app8122366 |
[146] |
Peng, F. L. et al. Analytical equation for the motion picture response time of display devices. J. Appl. Phys. 121, 023108 (2017). doi: 10.1063/1.4974006 |
[147] |
Pulli, K. 11-2: invited paper: meta 2: immersive optical-see-through augmented reality. Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 48, 132-133 (2017). doi: 10.1002/sdtp.11588 |
[148] |
Lee, B. & Jo, Y. in Advanced Display Technology: Next Generation Self-Emitting Displays (eds Kang, B., Han, C. W. & Jeong, J. K. ) 307-328 (Springer, 2021). |
[149] |
Cheng, D. W. et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt. 48, 2655-2668 (2009). doi: 10.1364/AO.48.002655 |
[150] |
Zheng, Z. R. et al. Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface. Appl. Opt. 49, 3661-3668 (2010). doi: 10.1364/AO.49.003661 |
[151] |
Wei, L. D. et al. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 26, 8550-8565 (2018). doi: 10.1364/OE.26.008550 |
[152] |
Liu, S., Hua, H. & Cheng, D. W. A novel prototype for an optical see-through head-mounted display with addressable focus cues. IEEE Trans. Vis. Computer Graph. 16, 381-393 (2010). doi: 10.1109/TVCG.2009.95 |
[153] |
Hua, H. & Javidi, B. A 3D integral imaging optical see-through head-mounted display. Opt. Express 22, 13484-13491 (2014). doi: 10.1364/OE.22.013484 |
[154] |
Song, W. T. et al. Design of a light-field near-eye display using random pinholes. Opt. Express 27, 23763-23774 (2019). doi: 10.1364/OE.27.023763 |
[155] |
Wang, X. & Hua, H. Depth-enhanced head-mounted light field displays based on integral imaging. Opt. Lett. 46, 985-988 (2021). doi: 10.1364/OL.413676 |
[156] |
Huang, H. K. & Hua, H. Generalized methods and strategies for modeling and optimizing the optics of 3D head-mounted light field displays. Opt. Express 27, 25154-25171 (2019). doi: 10.1364/OE.27.025154 |
[157] |
Huang, H. K. & Hua, H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 26, 17578-17590 (2018). doi: 10.1364/OE.26.017578 |
[158] |
Cheng, D. W. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light. : Adv. Manuf. 2, 24 (2021). doi: 10.37188/lam.2021.024 |
[159] |
Westheimer, G. The Maxwellian view. Vis. Res. 6, 669-682 (1966). doi: 10.1016/0042-6989(66)90078-2 |
[160] |
Do, H., Kim, Y. M. & Min, S. W. Focus-free head-mounted display based on Maxwellian view using retroreflector film. Appl. Opt. 58, 2882-2889 (2019). doi: 10.1364/AO.58.002882 |
[161] |
Park, J. H. & Kim, S. B. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Opt. Express 26, 27076-27088 (2018). doi: 10.1364/OE.26.027076 |
[162] |
Chang, C. L. et al. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563-1578 (2020). doi: 10.1364/OPTICA.406004 |
[163] |
Hsueh, C. K. & Sawchuk, A. A. Computer-generated double-phase holograms. Appl. Opt. 17, 3874-3883 (1978). doi: 10.1364/AO.17.003874 |
[164] |
Chakravarthula, P. et al. Wirtinger holography for near-eye displays. ACM Trans. Graph. 38, 213 (2019). doi: 10.1145/3355089.3356539 |
[165] |
Peng, Y. F. et al. Neural holography with camera-in-the-loop training. ACM Trans. Graph. 39, 185 (2020). doi: 10.1145/3414685.3417802 |
[166] |
Shi, L. et al. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234-239 (2021). doi: 10.1038/s41586-020-03152-0 |
[167] |
Jang, C. et al. Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 36, 190 (2017). doi: 10.1145/3130800.3130889 |
[168] |
Jang, C. et al. Holographic near-eye display with expanded eye-box. ACM Trans. Graph. 37, 195 (2018). |
[169] |
Kim, S. B. & Park, J. H. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox. Opt. Lett. 43, 767-770 (2018). doi: 10.1364/OL.43.000767 |
[170] |
Shrestha, P. K. et al. Accommodation-free head mounted display with comfortable 3D perception and an enlarged eye-box. Research 2019, 9273723 (2019). doi: 10.34133/2019/9273723 |
[171] |
Lin, T. G. et al. Maxwellian near-eye display with an expanded eyebox. Opt. Express 28, 38616-38625 (2020). doi: 10.1364/OE.413471 |
[172] |
Jo, Y. et al. Eye-box extended retinal projection type near-eye display with multiple independent viewpoints [Invited]. Appl. Opt. 60, A268-A276 (2021). doi: 10.1364/AO.408707 |
[173] |
Xiong, J. H. et al. Aberration-free pupil steerable Maxwellian display for augmented reality with cholesteric liquid crystal holographic lenses. Opt. Lett. 46, 1760-1763 (2021). doi: 10.1364/OL.422559 |
[174] |
Viirre, E. et al. Laser safety analysis of a retinal scanning display system. J. Laser Appl. 9, 253-260 (1997). doi: 10.2351/1.4745467 |
[175] |
Ratnam, K. et al. Retinal image quality in near-eye pupil-steered systems. Opt. Express 27, 38289-38311 (2019). doi: 10.1364/OE.27.038289 |
[176] |
Maimone, A. et al. Pinlight displays: wide field of view augmented reality eyeglasses using defocused point light sources. In Proc. ACM SIGGRAPH 2014 Emerging Technologies (ACM, Vancouver, Canada, 2014). |
[177] |
Jeong, J. et al. Holographically printed freeform mirror array for augmented reality near-eye display. IEEE Photonics Technol. Lett. 32, 991-994 (2020). doi: 10.1109/LPT.2020.3008215 |
[178] |
Ha, J. & Kim, J. Augmented reality optics system with pin mirror. US Patent 10, 989, 922 (2021). |
[179] |
Park, S. G. Augmented and mixed reality optical see-through combiners based on plastic optics. Inf. Disp. 37, 6-11 (2021). doi: 10.1002/msid.1226 |
[180] |
Xiong, J. H. et al. Breaking the field-of-view limit in augmented reality with a scanning waveguide display. OSA Contin. 3, 2730-2740 (2020). doi: 10.1364/OSAC.400900 |
[181] |
Levola, T. 7.1: invited paper: novel diffractive optical components for near to eye displays. Soc. Inf. Disp. Int. Symp. Dig. Tech. Pap. 37, 64-67 (2006). doi: 10.1889/1.2433589 |
[182] |
Laakkonen, P. et al. High efficiency diffractive incouplers for light guides. In Proc. SPIE 6896, Integrated Optics: Devices, Materials, and Technologies XII. (SPIE, San Jose, California, United States, 2008). |
[183] |
Bai, B. F. et al. Optimization of nonbinary slanted surface-relief gratings as high-efficiency broadband couplers for light guides. Appl. Opt. 49, 5454-5464 (2010). doi: 10.1364/AO.49.005454 |
[184] |
Äyräs, P., Saarikko, P. & Levola, T. Exit pupil expander with a large field of view based on diffractive optics. J. Soc. Inf. Disp. 17, 659-664 (2009). doi: 10.1889/JSID17.8.659 |
[185] |
Yoshida, T. et al. A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses. J. Soc. Inf. Disp. 26, 280-286 (2018). doi: 10.1002/jsid.659 |
[186] |
Yu, C. et al. Highly efficient waveguide display with space-variant volume holographic gratings. Appl. Opt. 56, 9390-9397 (2017). doi: 10.1364/AO.56.009390 |
[187] |
Shi, X. L. et al. Design of a compact waveguide eyeglass with high efficiency by joining freeform surfaces and volume holographic gratings. J. Optical Soc. Am. A 38, A19-A26 (2021). doi: 10.1364/JOSAA.404280 |
[188] |
Han, J. et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. Opt. Express 23, 3534-3549 (2015). doi: 10.1364/OE.23.003534 |
[189] |
Weng, Y. S. et al. Liquid-crystal-based polarization volume grating applied for full-color waveguide displays. Opt. Lett. 43, 5773-5776 (2018). doi: 10.1364/OL.43.005773 |
[190] |
Lee, Y. H. et al. Compact see-through near-eye display with depth adaption. J. Soc. Inf. Disp. 26, 64-70 (2018). doi: 10.1002/jsid.635 |
[191] |
Tekolste, R. D. & Liu, V. K. Outcoupling grating for augmented reality system. US Patent 10, 073, 267 (2018). |
[192] |
Grey, D. & Talukdar, S. Exit pupil expanding diffractive optical waveguiding device. US Patent 10, 073, 267 (2019). |
[193] |
Yoo, C. et al. Extended-viewing-angle waveguide near-eye display with a polarization-dependent steering combiner. Opt. Lett. 45, 2870-2873 (2020). doi: 10.1364/OL.391965 |
[194] |
Schowengerdt, B. T., Lin, D. & St. Hilaire, P. Multi-layer diffractive eyepiece with wavelength-selective reflector. US Patent 10, 725, 223 (2020). |
[195] |
Wang, Q. W. et al. Stray light and tolerance analysis of an ultrathin waveguide display. Appl. Opt. 54, 8354-8362 (2015). doi: 10.1364/AO.54.008354 |
[196] |
Wang, Q. W. et al. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide. Opt. Express 28, 35376-35394 (2020). doi: 10.1364/OE.409006 |
[197] |
Frommer, A. Lumus: maximus: large FoV near to eye display for consumer AR glasses. In Proc. SPIE 11764, AVR21 Industry Talks II. Online Only (SPIE, 2021). |
[198] |
Ayres, M. R. et al. Skew mirrors, methods of use, and methods of manufacture. US Patent 10, 180, 520 (2019). |
[199] |
Utsugi, T. et al. Volume holographic waveguide using multiplex recording for head-mounted display. ITE Trans. Media Technol. Appl. 8, 238-244 (2020). doi: 10.3169/mta.8.238 |
[200] |
Aieta, F. et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342-1345 (2015). doi: 10.1126/science.aaa2494 |
[201] |
Arbabi, E. et al. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica 4, 625-632 (2017). doi: 10.1364/OPTICA.4.000625 |