[1] Graydon, O. Adaptive infrared camouflage. Nature Photonics 12, 445-445 (2018). doi: 10.1038/s41566-018-0233-1
[2] Chandra, S. et al. Adaptive multispectral infrared camouflage. ACS Photonics 5, 4513-4519 (2018). doi: 10.1021/acsphotonics.8b00972
[3] Zhu, H. Z. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications 12, 1805 (2021). doi: 10.1038/s41467-021-22051-0
[4] Zhu, H. Z. et al. High-temperature infrared camouflage with efficient thermal management. Light: Science & Applications 9 , 60 (2020).
[5] Xi, W. et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nature Communications 14, 4694 (2023). doi: 10.1038/s41467-023-40350-6
[6] Li, M. Y. et al. Manipulating metals for adaptive thermal camouflage. Science Advances 6, eaba3494 (2020). doi: 10.1126/sciadv.aba3494
[7] Salihoglu, Q. et al. Graphene-based adaptive thermal camouflage. Nano Letters 18, 4541-4548 (2018). doi: 10.1021/acs.nanolett.8b01746
[8] Jiang, X. P. et al. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express 30, 18250-18263 (2022). doi: 10.1364/OE.456791
[9] Wu, Y. J. et al. Optically transparent infrared selective emitter for visible-infrared compatible camouflage. Optics Express 30, 17259-17269 (2022). doi: 10.1364/OE.457547
[10] Zhou, Z. Y. & Huang, J. Joint improvements of radar/infrared stealth for exhaust system of unmanned aircraft based on sorting factor Pareto solution. Scientific Reports 11, 8251 (2021). doi: 10.1038/s41598-021-87756-0
[11] Quan, C. et al. High-temperature resistant broadband infrared stealth metamaterial absorber. Optics & Laser Technology 156, 108579 (2022).
[12] Zou, J. L. et al. Multiband metamaterial selective absorber for infrared stealth. Applied Optics 59, 8768-8772 (2020). doi: 10.1364/AO.405015
[13] Zhou, Y. et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light: Science & Applications 10 , 138 (2021).
[14] Zhao, L. et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth. Applied Optics 57, 1757-1764 (2018). doi: 10.1364/AO.57.001757
[15] Zhang, D. et al. Ultra-wideband flexible radar-infrared bi-stealth absorber based on a patterned graphene. Optics Express 31, 1969-1981 (2023). doi: 10.1364/OE.476639
[16] Zhang, C. L. et al. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Scientific Reports 7, 5652 (2017). doi: 10.1038/s41598-017-06087-1
[17] Gu, S. et al. Laser-compatible infrared stealth metamaterial based on high-temperature resistant metal. Infrared Physics & Technology 136, 105072 (2024).
[18] Peng, L. et al. A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials 6, 1801006 (2018). doi: 10.1002/adom.201801006
[19] Ren, Y. et al. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Optics Express 29, 7666-7679 (2021). doi: 10.1364/OE.418273
[20] Lin, K. T. et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature Communications 11, 1389 (2020). doi: 10.1038/s41467-020-15116-z
[21] Li, Z. G. et al. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Optics Express 26, 5616-5631 (2018). doi: 10.1364/OE.26.005616
[22] Qin, B. et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light: Science & Applications 12 , 246 (2023).
[23] Zhang, J. H. et al. Thin-film perfect infrared absorbers over single- and dual-band atmospheric windows. Optics Letters 45, 2800-2803 (2020). doi: 10.1364/OL.392651
[24] Kang, J. F. et al. Multifunctional-hierarchical flexibility metasurfaces for multispectral compatible camouflage of microwave, infrared and visible. Optics Express 31, 29280-29299 (2023). doi: 10.1364/OE.494367
[25] Lin, H. et al. Dual-polarized bidirectional three-dimensional metamaterial absorber with transmission windows. Optics Express 29, 40770-40780 (2021). doi: 10.1364/OE.446143
[26] Melinger, J. S. et al. THz detection of small molecule vapors in the atmospheric transmission windows. Optics Express 20 , 6788-6807 (2012).
[27] Cheng, Y. Z. et al. Dual and broadband terahertz metamaterial absorber based on a compact resonator structure. Optical Materials Express 8, 3104-3114 (2018). doi: 10.1364/OME.8.003104
[28] Gao, Z. Q. et al. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity. Optics Express 29, 22108-22116 (2021). doi: 10.1364/OE.428184
[29] Wang, L. et al. Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. Optics Letters 46, 5224-5227 (2021). doi: 10.1364/OL.441605
[30] Chen, H. T. et al. Active terahertz metamaterial devices. Nature 444, 597-600 (2006). doi: 10.1038/nature05343
[31] Kong, A. R. et al. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Optics Express 27, 30102-30115 (2019). doi: 10.1364/OE.27.030102
[32] Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials 11, 936-941 (2012). doi: 10.1038/nmat3433
[33] Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics 13, 270-276 (2019). doi: 10.1038/s41566-019-0389-3
[34] Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials 9, 707-715 (2010). doi: 10.1038/nmat2810
[35] Molesky, S., Dewalt, C. J. & Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Optics Express 21, A96-A110 (2013). doi: 10.1364/OE.21.000A96
[36] Ou, J. Y. et al. Reconfigurable photonic metamaterials. Nano Letters 11, 2142-2144 (2011). doi: 10.1021/nl200791r
[37] Ou, J. Y. et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology 8, 252-255 (2013). doi: 10.1038/nnano.2013.25
[38] Papadakis, G. T. et al. Optical magnetism in planar metamaterial heterostructures. Nature Communications 9, 296 (2018). doi: 10.1038/s41467-017-02589-8
[39] Qin, Z. et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring. Optics Express 30, 473-483 (2022). doi: 10.1364/OE.446655
[40] Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628
[41] Wang, B. X. et al. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch. Nanoscale Advances 4, 1359-1367 (2022). doi: 10.1039/D1NA00789K
[42] Wolf, O. et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nature Communications 6, 7667 (2015). doi: 10.1038/ncomms8667
[43] Yang, W. H. et al. Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial. Nature Communications 13, 1719 (2022). doi: 10.1038/s41467-022-29452-9
[44] Yang, Z. Y. et al. Narrowband wavelength selective thermal emitters by confined Tamm Plasmon Polaritons. ACS Photonics, 4, 2212-2219 (2017). doi: 10.1021/acsphotonics.7b00408
[45] Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Materials 11, 917-924 (2012). doi: 10.1038/nmat3431
[46] Zhu, W. M. et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nature Communications 3, 1274 (2012). doi: 10.1038/ncomms2285
[47] Snyder, W. C., Wan, Z. M. & Li, X. W. Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law. Applied Optics 37, 3464-3470 (1998). doi: 10.1364/AO.37.003464
[48] Sun, R. Z. et al. Broadband switching of mid-infrared atmospheric windows by VO2 -based thermal emitter. Optics Express 27, 11537-11546 (2019). doi: 10.1364/OE.27.011537
[49] Lepeshov, S. & Krasnok, A. Tunable phase-change metasurfaces. Nature Nanotechnology 16, 615-616 (2021). doi: 10.1038/s41565-021-00892-6
[50] Wang, Y. F. et al. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology 16, 667-672 (2021). doi: 10.1038/s41565-021-00882-8
[51] Guo, P. F., Sarangan, A. M. & Agha, I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Applied Sciences 9, 530 (2019). doi: 10.3390/app9030530
[52] Fang, Z. R. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nature Nanotechnology 17, 842-848 (2022). doi: 10.1038/s41565-022-01153-w
[53] Qu, Y. R. et al. Thermal camouflage based on the phase-changing material GST. Light: Science & Applications 7 , 26 (2018).
[54] Pan, M. Y. et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020). doi: 10.1016/j.nanoen.2020.104449
[55] Du, K. K. et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science & Applications 6 , e16194 (2017).
[56] Quan, C. et al. Phase change metamaterial for tunable infrared stealth and camouflage. Optics Express 30, 43741-43751 (2022). doi: 10.1364/OE.478302
[57] Xu, Z. Q. et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Letters 21, 5269-5276 (2021). doi: 10.1021/acs.nanolett.1c01396
[58] Xu, Z. Q. et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser & Photonics Reviews 14, 1900162 (2020).
[59] Guo, X. Y. & Xie, X. Z. Planck formula for black-body radiation: derivation and applications. Highlights in Science, Engineering and Technology 64, 200-204 (2023). doi: 10.54097/hset.v64i.11280
[60] Zhou, Y. X. et al. Tunable mid-infrared selective emitter with thermal management for infrared camouflage. Plasmonics 18, 2465-2473 (2023). doi: 10.1007/s11468-023-01955-1
[61] Kang, Q. L. et al. Multiband tunable thermal camouflage compatible with laser camouflage based on GST plasmonic metamaterial. Journal of Physics D: Applied Physics 55, 065103 (2022). doi: 10.1088/1361-6463/ac31f5
[62] Gholipour, B. et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Advanced Materials 25, 3050-3054 (2013). doi: 10.1002/adma.201300588
[63] Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology 16, 661-666 (2021). doi: 10.1038/s41565-021-00881-9