[1] |
Graydon, O. Adaptive infrared camouflage. Nature Photonics 12, 445-445 (2018). doi: 10.1038/s41566-018-0233-1 |
[2] |
Chandra, S. et al. Adaptive multispectral infrared camouflage. ACS Photonics 5, 4513-4519 (2018). doi: 10.1021/acsphotonics.8b00972 |
[3] |
Zhu, H. Z. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nature Communications 12, 1805 (2021). doi: 10.1038/s41467-021-22051-0 |
[4] |
Zhu, H. Z. et al. High-temperature infrared camouflage with efficient thermal management. Light: Science & Applications 9 , 60 (2020). |
[5] |
Xi, W. et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nature Communications 14, 4694 (2023). doi: 10.1038/s41467-023-40350-6 |
[6] |
Li, M. Y. et al. Manipulating metals for adaptive thermal camouflage. Science Advances 6, eaba3494 (2020). doi: 10.1126/sciadv.aba3494 |
[7] |
Salihoglu, Q. et al. Graphene-based adaptive thermal camouflage. Nano Letters 18, 4541-4548 (2018). doi: 10.1021/acs.nanolett.8b01746 |
[8] |
Jiang, X. P. et al. Tunable mid-infrared selective emitter based on inverse design metasurface for infrared stealth with thermal management. Optics Express 30, 18250-18263 (2022). doi: 10.1364/OE.456791 |
[9] |
Wu, Y. J. et al. Optically transparent infrared selective emitter for visible-infrared compatible camouflage. Optics Express 30, 17259-17269 (2022). doi: 10.1364/OE.457547 |
[10] |
Zhou, Z. Y. & Huang, J. Joint improvements of radar/infrared stealth for exhaust system of unmanned aircraft based on sorting factor Pareto solution. Scientific Reports 11, 8251 (2021). doi: 10.1038/s41598-021-87756-0 |
[11] |
Quan, C. et al. High-temperature resistant broadband infrared stealth metamaterial absorber. Optics & Laser Technology 156, 108579 (2022). |
[12] |
Zou, J. L. et al. Multiband metamaterial selective absorber for infrared stealth. Applied Optics 59, 8768-8772 (2020). doi: 10.1364/AO.405015 |
[13] |
Zhou, Y. et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime. Light: Science & Applications 10 , 138 (2021). |
[14] |
Zhao, L. et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth. Applied Optics 57, 1757-1764 (2018). doi: 10.1364/AO.57.001757 |
[15] |
Zhang, D. et al. Ultra-wideband flexible radar-infrared bi-stealth absorber based on a patterned graphene. Optics Express 31, 1969-1981 (2023). doi: 10.1364/OE.476639 |
[16] |
Zhang, C. L. et al. Dual-band wide-angle metamaterial perfect absorber based on the combination of localized surface plasmon resonance and Helmholtz resonance. Scientific Reports 7, 5652 (2017). doi: 10.1038/s41598-017-06087-1 |
[17] |
Gu, S. et al. Laser-compatible infrared stealth metamaterial based on high-temperature resistant metal. Infrared Physics & Technology 136, 105072 (2024). |
[18] |
Peng, L. et al. A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials 6, 1801006 (2018). doi: 10.1002/adom.201801006 |
[19] |
Ren, Y. et al. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials. Optics Express 29, 7666-7679 (2021). doi: 10.1364/OE.418273 |
[20] |
Lin, K. T. et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nature Communications 11, 1389 (2020). doi: 10.1038/s41467-020-15116-z |
[21] |
Li, Z. G. et al. Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Optics Express 26, 5616-5631 (2018). doi: 10.1364/OE.26.005616 |
[22] |
Qin, B. et al. Whole-infrared-band camouflage with dual-band radiative heat dissipation. Light: Science & Applications 12 , 246 (2023). |
[23] |
Zhang, J. H. et al. Thin-film perfect infrared absorbers over single- and dual-band atmospheric windows. Optics Letters 45, 2800-2803 (2020). doi: 10.1364/OL.392651 |
[24] |
Kang, J. F. et al. Multifunctional-hierarchical flexibility metasurfaces for multispectral compatible camouflage of microwave, infrared and visible. Optics Express 31, 29280-29299 (2023). doi: 10.1364/OE.494367 |
[25] |
Lin, H. et al. Dual-polarized bidirectional three-dimensional metamaterial absorber with transmission windows. Optics Express 29, 40770-40780 (2021). doi: 10.1364/OE.446143 |
[26] |
Melinger, J. S. et al. THz detection of small molecule vapors in the atmospheric transmission windows. Optics Express 20 , 6788-6807 (2012). |
[27] |
Cheng, Y. Z. et al. Dual and broadband terahertz metamaterial absorber based on a compact resonator structure. Optical Materials Express 8, 3104-3114 (2018). doi: 10.1364/OME.8.003104 |
[28] |
Gao, Z. Q. et al. Ultra-wideband flexible transparent metamaterial with wide-angle microwave absorption and low infrared emissivity. Optics Express 29, 22108-22116 (2021). doi: 10.1364/OE.428184 |
[29] |
Wang, L. et al. Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design. Optics Letters 46, 5224-5227 (2021). doi: 10.1364/OL.441605 |
[30] |
Chen, H. T. et al. Active terahertz metamaterial devices. Nature 444, 597-600 (2006). doi: 10.1038/nature05343 |
[31] |
Kong, A. R. et al. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling. Optics Express 27, 30102-30115 (2019). doi: 10.1364/OE.27.030102 |
[32] |
Lee, S. H. et al. Switching terahertz waves with gate-controlled active graphene metamaterials. Nature Materials 11, 936-941 (2012). doi: 10.1038/nmat3433 |
[33] |
Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nature Photonics 13, 270-276 (2019). doi: 10.1038/s41566-019-0389-3 |
[34] |
Luk'yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nature Materials 9, 707-715 (2010). doi: 10.1038/nmat2810 |
[35] |
Molesky, S., Dewalt, C. J. & Jacob, Z. High temperature epsilon-near-zero and epsilon-near-pole metamaterial emitters for thermophotovoltaics. Optics Express 21, A96-A110 (2013). doi: 10.1364/OE.21.000A96 |
[36] |
Ou, J. Y. et al. Reconfigurable photonic metamaterials. Nano Letters 11, 2142-2144 (2011). doi: 10.1021/nl200791r |
[37] |
Ou, J. Y. et al. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology 8, 252-255 (2013). doi: 10.1038/nnano.2013.25 |
[38] |
Papadakis, G. T. et al. Optical magnetism in planar metamaterial heterostructures. Nature Communications 9, 296 (2018). doi: 10.1038/s41467-017-02589-8 |
[39] |
Qin, Z. et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring. Optics Express 30, 473-483 (2022). doi: 10.1364/OE.446655 |
[40] |
Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977-980 (2006). doi: 10.1126/science.1133628 |
[41] |
Wang, B. X. et al. Realization of a multi-band terahertz metamaterial absorber using two identical split rings having opposite opening directions connected by a rectangular patch. Nanoscale Advances 4, 1359-1367 (2022). doi: 10.1039/D1NA00789K |
[42] |
Wolf, O. et al. Phased-array sources based on nonlinear metamaterial nanocavities. Nature Communications 6, 7667 (2015). doi: 10.1038/ncomms8667 |
[43] |
Yang, W. H. et al. Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial. Nature Communications 13, 1719 (2022). doi: 10.1038/s41467-022-29452-9 |
[44] |
Yang, Z. Y. et al. Narrowband wavelength selective thermal emitters by confined Tamm Plasmon Polaritons. ACS Photonics, 4, 2212-2219 (2017). doi: 10.1021/acsphotonics.7b00408 |
[45] |
Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nature Materials 11, 917-924 (2012). doi: 10.1038/nmat3431 |
[46] |
Zhu, W. M. et al. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nature Communications 3, 1274 (2012). doi: 10.1038/ncomms2285 |
[47] |
Snyder, W. C., Wan, Z. M. & Li, X. W. Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law. Applied Optics 37, 3464-3470 (1998). doi: 10.1364/AO.37.003464 |
[48] |
Sun, R. Z. et al. Broadband switching of mid-infrared atmospheric windows by VO2 -based thermal emitter. Optics Express 27, 11537-11546 (2019). doi: 10.1364/OE.27.011537 |
[49] |
Lepeshov, S. & Krasnok, A. Tunable phase-change metasurfaces. Nature Nanotechnology 16, 615-616 (2021). doi: 10.1038/s41565-021-00892-6 |
[50] |
Wang, Y. F. et al. Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology 16, 667-672 (2021). doi: 10.1038/s41565-021-00882-8 |
[51] |
Guo, P. F., Sarangan, A. M. & Agha, I. A review of germanium-antimony-telluride phase change materials for non-volatile memories and optical modulators. Applied Sciences 9, 530 (2019). doi: 10.3390/app9030530 |
[52] |
Fang, Z. R. et al. Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters. Nature Nanotechnology 17, 842-848 (2022). doi: 10.1038/s41565-022-01153-w |
[53] |
Qu, Y. R. et al. Thermal camouflage based on the phase-changing material GST. Light: Science & Applications 7 , 26 (2018). |
[54] |
Pan, M. Y. et al. Multi-band middle-infrared-compatible camouflage with thermal management via simple photonic structures. Nano Energy 69, 104449 (2020). doi: 10.1016/j.nanoen.2020.104449 |
[55] |
Du, K. K. et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light: Science & Applications 6 , e16194 (2017). |
[56] |
Quan, C. et al. Phase change metamaterial for tunable infrared stealth and camouflage. Optics Express 30, 43741-43751 (2022). doi: 10.1364/OE.478302 |
[57] |
Xu, Z. Q. et al. Nonvolatile optically reconfigurable radiative metasurface with visible tunability for anticounterfeiting. Nano Letters 21, 5269-5276 (2021). doi: 10.1021/acs.nanolett.1c01396 |
[58] |
Xu, Z. Q. et al. Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser & Photonics Reviews 14, 1900162 (2020). |
[59] |
Guo, X. Y. & Xie, X. Z. Planck formula for black-body radiation: derivation and applications. Highlights in Science, Engineering and Technology 64, 200-204 (2023). doi: 10.54097/hset.v64i.11280 |
[60] |
Zhou, Y. X. et al. Tunable mid-infrared selective emitter with thermal management for infrared camouflage. Plasmonics 18, 2465-2473 (2023). doi: 10.1007/s11468-023-01955-1 |
[61] |
Kang, Q. L. et al. Multiband tunable thermal camouflage compatible with laser camouflage based on GST plasmonic metamaterial. Journal of Physics D: Applied Physics 55, 065103 (2022). doi: 10.1088/1361-6463/ac31f5 |
[62] |
Gholipour, B. et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Advanced Materials 25, 3050-3054 (2013). doi: 10.1002/adma.201300588 |
[63] |
Zhang, Y. F. et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nature Nanotechnology 16, 661-666 (2021). doi: 10.1038/s41565-021-00881-9 |