[1] |
Fratz, M. et al. Digital holography in production: an overview. Light: Advanced Manufacturing 2, 283-295 (2021). |
[2] |
Nolte, D. D. Cancer holography for personalized medicine. Optics and Photonics News 32, 42-49 (2021). |
[3] |
Harte, J. M., et al. Chest wall motion analysis in healthy volunteers and adults with cystic fibrosis using a novel Kinect-based motion tracking system. Medical & Biological Engineering & Computing 54, 1631-1640 (2016). |
[4] |
Wang, Q. & Kim, M. K. Applications of 3D point cloud data in the construction industry: a fifteen-year review from 2004 to 2018. Advanced Engineering Informatics 39, 306-319 (2019). doi: 10.1016/j.aei.2019.02.007 |
[5] |
Haleem, A. & Javaid, M. 3D scanning applications in medical field: a literature-based review. Clinical Epidemiology and Global Health 7, 199-210 (2019). doi: 10.1016/j.cegh.2018.05.006 |
[6] |
Heist, S. et al. GOBO projection for 3D measurements at highest frame rates: a performance analysis. Light: Science & Applications 7, 71 (2018). |
[7] |
Furukawa, R. et al. Single-shot dense active stereo with pixel-wise phase estimation based on grid-structure using CNN and correspondence estimation using GCN. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa, USA: IEEE, 2022. |
[8] |
Willomitzer, F. & Häusler, G. Single-shot 3D motion picture camera with a dense point cloud. Optics Express 25, 23451-23464 (2017). doi: 10.1364/OE.25.023451 |
[9] |
Zuo, C. et al. Micro Fourier transform profilometry (μFTP): 3D shape measurement at 10, 000 frames per second. Optics and Lasers in Engineering 102, 70-91 (2018). doi: 10.1016/j.optlaseng.2017.10.013 |
[10] |
Zhong, F. Q., Kumar, R. & Quan, C. G. RGB laser speckles based 3D profilometry. Applied Physics Letters 114, 201104 (2019). doi: 10.1063/1.5094125 |
[11] |
Montrésor, S. et al. Error analysis for noise reduction in 3D deformation measurement with digital color holography. Journal of the Optical Society of America B 34, B9-B15 (2017). doi: 10.1364/JOSAB.34.0000B9 |
[12] |
Marar, A. &. Kner, P. Three-dimensional nanoscale localization of point-like objects using self-interference digital holography. Optics Letters 45, 591-594 (2020). doi: 10.1364/OL.379047 |
[13] |
Etchepareborda, P., Moulet, M. H. & Melon, M. Random laser speckle pattern projection for non-contact vibration measurements using a single high-speed camera. Mechanical Systems and Signal Processing 158, 107719 (2021). doi: 10.1016/j.ymssp.2021.107719 |
[14] |
Nobukawa, T. et al. Bimodal incoherent digital holography for both three-dimensional imaging and quasi-infinite–depth-of-field imaging. Scientific Reports 9, 3363 (2019). doi: 10.1038/s41598-019-39728-8 |
[15] |
Grosse, M. et al. 3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination. Optics Letters 35, 1233-1235 (2010). doi: 10.1364/OL.35.001233 |
[16] |
Babovsky, H. et al. Stereophotogrammetric 3D shape measurement by holographic methods using structured speckle illumination combined with interferometry. Optics Letters 36, 4512-4514 (2011). doi: 10.1364/OL.36.004512 |
[17] |
Furukawa, R. et al. Fully auto-calibrated active-stereo-based 3D endoscopic system using correspondence estimation with graph convolutional network. Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). Montreal: IEEE, 2020. |
[18] |
Guo, C. L., Urner, T. & Jia, S. 3D light-field endoscopic imaging using a GRIN lens array. Applied Physics Letters 116, 101105 (2020). doi: 10.1063/1.5143113 |
[19] |
Lukic, A. et al. Endoscopic fiber probe for nonlinear spectroscopic imaging. Optica 4, 496-501 (2017). doi: 10.1364/OPTICA.4.000496 |
[20] |
Matz, G. et al. Chip-on-the-tip compact flexible endoscopic epifluorescence video-microscope for in-vivo imaging in medicine and biomedical research. Biomedical Optics Express 8, 3329-3342 (2017). doi: 10.1364/BOE.8.003329 |
[21] |
Wong, E. et al. Calibration of an array projector used for high-speed three-dimensional shape measurements using a single camera. Applied Optics 57, 7570-7578 (2018). doi: 10.1364/AO.57.007570 |
[22] |
Wong, E. et al. View-synthesized ‘re-calibration’ of an array projector for 3D measurement from an arbitrary monocular view. Optics and Lasers in Engineering 141, 106559 (2021). doi: 10.1016/j.optlaseng.2021.106559 |
[23] |
Wong, E. et al. Optimization-based extrinsic calibration of a three-dimensional sensor composed of an array projector and a single camera. Optical Engineering 58, 104109 (2019). |
[24] |
Stark, A. et al. Repeatable speckle projector for single-camera three-dimensional measurement. Optical Engineering 57, 120501 (2018). |
[25] |
Heist, S. et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Optics Express 26, 23366-23379 (2018). doi: 10.1364/OE.26.023366 |
[26] |
Landmann, M. et al. High-speed 3D thermography. Optics and Lasers in Engineering 121, 448-455 (2019). doi: 10.1016/j.optlaseng.2019.05.009 |
[27] |
Kühmstedt, P. et al. GOBO projection for underwater 3D measurement technique. Proceedings of SPIE 10329, Optical Measurement Systems for Industrial Inspection X. Munich: SPIE, 2017. |
[28] |
Zhang, S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques. Optics and Lasers in Engineering 48, 149-158 (2010). doi: 10.1016/j.optlaseng.2009.03.008 |
[29] |
Zhang, S. & Huang, P. S. Novel method for structured light system calibration. Optical Engineering 45, 083601 (2006). doi: 10.1117/1.2336196 |
[30] |
Legarda-Sáenz, R., Bothe, T. & Jüptner, W. P. O. Accurate procedure for the calibration of a structured light system. Optical Engineering 43, 464-471 (2004). doi: 10.1117/1.1635373 |
[31] |
Hu, J. J. et al. Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries. Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2019. |
[32] |
Schaffer, M., Grosse, M. & Kowarschik, R. High-speed pattern projection for three-dimensional shape measurement using laser speckles. Applied Optics 49, 3622-3629 (2010). doi: 10.1364/AO.49.003622 |
[33] |
Stark, A. W., et al. Subjective speckle suppression for 3D measurement using one-dimensional numerical filtering. Applied Optics 34, 9473-9483 (2019). |