[1] Lu, Q. B. et al. Review of micromachined optical accelerometers: from mg to sub-μg. Opto-Electronic Advances 4, 200045 (2021). doi: 10.29026/oea.2021.200045
[2] Yang, Y. et al. Fiber-optic Fabry–Perot sensor for simultaneous measurement of tilt angle and vibration acceleration. IEEE Sensors Journal 19, 2162-2169 (2019).
[3] Rahimi, M. et al. Design and fabrication of a differential MOEMS accelerometer based on Fabry–Pérot micro-cavities. IEEE Sensors Journal 22, 14779-14785 (2022). doi: 10.1109/JSEN.2022.3184979
[4] Yang, Z. et al. Design, simulation and Optimisation of a Fibre-optic 3D accelerometer. Optics & Laser Technology 49, 137-142 (2013).
[5] Gagliardi, G. et al. Probing the ultimate limit of fiber-optic strain sensing. Science 330, 1081-1084 (2010). doi: 10.1126/science.1195818
[6] Pisco, M. et al. Opto-mechanical lab-on-fibre seismic sensors detected the Norcia earthquake. Scientific Reports 8, 6680 (2018). doi: 10.1038/s41598-018-25082-8
[7] Alzgool, M. et al. Self-powered triboelectric MEMS accelerometer. Nano Energy 109, 108282 (2023). doi: 10.1016/j.nanoen.2023.108282
[8] Gong, X. W. et al. An aerosol deposition based MEMS piezoelectric accelerometer for low noise measurement. Microsystems & Nanoengineering 9, 23 (2023).
[9] Lanniel, A. et al. Noise analysis of charge-balanced readout circuits for MEMS accelerometers. IEEE Transactions on Circuits and Systems I: Regular Papers 68, 175-184 (2021). doi: 10.1109/TCSI.2020.3034159
[10] Mustafazade, A. et al. A vibrating beam MEMS accelerometer for gravity and seismic measurements. Scientific Reports 10, 10415 (2020). doi: 10.1038/s41598-020-67046-x
[11] Pagliano, S. et al. Micro 3D printing of a functional MEMS accelerometer. Microsystems & Nanoengineering 8, 105 (2022).
[12] Gagliardi, G. et al. Design and test of a laser-based optical-fiber Bragg-grating accelerometer for seismic applications. Measurement Science and Technology 19, 085306 (2008). doi: 10.1088/0957-0233/19/8/085306
[13] Da Costa Antunes, P. F. et al. Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sensors Journal 9, 1347-1354 (2009). doi: 10.1109/JSEN.2009.2026548
[14] Basumallick, N. et al. Fiber Bragg grating accelerometer with enhanced sensitivity. Sensors and Actuators A: Physical 173, 108-115 (2012). doi: 10.1016/j.sna.2011.10.026
[15] Li, Y. Z. et al. Enhancing the performance of FBG accelerometers by using in-fiber Fabry Perot interferometers. IEEE Sensors Journal 22, 23931-23936 (2022). doi: 10.1109/JSEN.2022.3218677
[16] Zhou, W. J. et al. Temperature-insensitive accelerometer based on a strain-chirped FBG. Sensors and Actuators A: Physical 157, 15-18 (2010). doi: 10.1016/j.sna.2009.11.003
[17] Wang, X. F. et al. High-frequency optical fiber Bragg grating accelerometer. IEEE Sensors Journal 18, 4954-4960 (2018). doi: 10.1109/JSEN.2018.2833885
[18] Yu, Y. Y. et al. Miniature two-axis accelerometer based on multicore fiber for pantograph-catenary system. IEEE Transactions on Instrumentation and Measurement 72, 7005208 (2023).
[19] Liang, L. et al. Miniature bending-resistant fiber grating accelerometer based on a flexible hinge structure. Optics Express 30, 33502-33514 (2022). doi: 10.1364/OE.465453
[20] Guzmán Cervantes, F. et al. High sensitivity optomechanical reference accelerometer over 10 kHz. Applied Physics Letters 104, 221111 (2014). doi: 10.1063/1.4881936
[21] Zhao, Z. H. et al. A fiber-optic Fabry-Perot accelerometer based on high-speed white light interferometry demodulation. Journal of Lightwave Technology 36, 1562-1567 (2018). doi: 10.1109/JLT.2017.2783882
[22] Wang, D. et al. High sensitivity fiber optic acceleration sensor based on Fabry-Perot interferometer. Optical Fiber Technology 72, 102989 (2022). doi: 10.1016/j.yofte.2022.102989
[23] Zhang, L. C. et al. Micro all-glass fiber-optic accelerometers. Optical Engineering 57, 087107 (2018).
[24] Ma, W. Y. et al. Miniature on-fiber extrinsic Fabry-Perot interferometric vibration sensors based on micro-cantilever beam. Nanotechnology Reviews 8, 293-298 (2019). doi: 10.1515/ntrev-2019-0028
[25] Bruno, F. A. et al. Opto-mechanical lab-on-fiber accelerometers. Journal of Lightwave Technology 38, 1998-2009 (2020). doi: 10.1109/JLT.2019.2961766
[26] Zhang, P. et al. A fiber-optic accelerometer based on extrinsic Fabry-Perot interference for low frequency micro-vibration measurement. IEEE Photonics Journal 14, 6837006 (2022).
[27] Qian, J. et al. An accelerometer based on all silica in-line Fiber Fabry-perot etalon for high temperature up to 800°C. Micromachines 13, 548 (2022). doi: 10.3390/mi13040548
[28] André, R. M. et al. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications. Optics Express 22, 13102-13108 (2014). doi: 10.1364/OE.22.013102
[29] Taghavi, M. et al. Simulation, fabrication, and characterization of a sensitive SU-8-based Fabry-Pérot MOEMS accelerometer. Journal of Lightwave Technology 37, 1893-1902 (2019). doi: 10.1109/JLT.2019.2894752
[30] Zhao, M. H. et al. A MEMS based Fabry-Perot accelerometer with high resolution. Microsystem Technologies 26, 1961-1969 (2020). doi: 10.1007/s00542-020-04747-3
[31] Yao, M. et al. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator. Optics Letters 45, 3516-3519 (2020). doi: 10.1364/OL.393900
[32] Wu, J. S. et al. Optical fiber-tip Fabry–Perot interferometric pressure sensor based on an in situ μ-printed air cavity. Journal of Lightwave Technology 36, 3618-3623 (2018). doi: 10.1109/JLT.2018.2843885
[33] Lorenz, H. et al. SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering 7 , 121-124 (1997).
[34] De Freitas, J. M. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks. Measurement Science and Technology 22, 052001 (2011). doi: 10.1088/0957-0233/22/5/052001
[35] Hong, G. Q. et al. Optical fiber acoustic sensor with gold diaphragm based Fabry-Perot interferometer. Sensors and Actuators A: Physical 366, 114930 (2024). doi: 10.1016/j.sna.2023.114930