[1] |
Schnars, U. & Jüptner, W. Direct recording of holograms by a CCD target and numerical reconstruction. Applied Optics 33, 179-181 (1994). doi: 10.1364/AO.33.000179 |
[2] |
Yu, X. et al. Review of digital holographic microscopy for three-dimensional profiling and tracking. Optical Engineering 53, 112306 (2014). doi: 10.1117/1.OE.53.11.112306 |
[3] |
Osten, W. et al. Recent advances in digital holography [Invited]. Applied Optics 53, G44-G63 (2014). doi: 10.1364/AO.53.000G44 |
[4] |
Micó, V. et al. Resolution enhancement in quantitative phase microscopy. Advances in Optics and Photonics 11, 135-214 (2019). doi: 10.1364/AOP.11.000135 |
[5] |
Goodman, J. W. & Lawrence, R. W. Digital image formation from electronically detected holograms. Applied Physics Letters 11, 77-79 (1967). doi: 10.1063/1.1755043 |
[6] |
Kim, M. K. Principles and techniques of digital holographic microscopy. SPIE Reviews 1, 018005 (2010). |
[7] |
Latychevskaia, T. & Fink, H. W. Solution to the twin image problem in holography. Physical Review Letters 98, 233901 (2007). doi: 10.1103/PhysRevLett.98.233901 |
[8] |
Gabor, D. A new microscopic principle. Nature 161, 777-778 (1948). doi: 10.1038/161777a0 |
[9] |
Langehanenberg, P., von Bally, G. & Kemper, B. Autofocusing in digital holographic microscopy. 3D Research 2, 4 (2011). |
[10] |
Gao, P. et al. Autofocusing of digital holographic microscopy based on off-axis illuminations. Optics Letters 37, 3630-3632 (2012). doi: 10.1364/OL.37.003630 |
[11] |
Charrière, F. et al. Characterization of microlenses by digital holographic microscopy. Applied Optics 45, 829-835 (2006). doi: 10.1364/AO.45.000829 |
[12] |
Markus, F. et al. Digital holography in production: an overview. Light:Advanced Manufacturing 2, 15 (2021). |
[13] |
Cubreli, G. et al. Digital holographic interferometry for the measurement of symmetrical temperature fields in liquids. Photonics 8, 200 (2021). doi: 10.3390/photonics8060200 |
[14] |
Kemper, B. & von Bally, G. Digital holographic microscopy for live cell applications and technical inspection. Applied Optics 47, A52-A61 (2008). doi: 10.1364/AO.47.000A52 |
[15] |
Born, M. & Wolf, E. Principles of Optics. 7th edn. (Cambridge: Cambridge University, 1999). |
[16] |
Cotte, Y. et al. Marker-free phase nanoscopy. Nature Photonics 7, 113-117 (2013). doi: 10.1038/nphoton.2012.329 |
[17] |
den Dekker, A. J. & van den Bos. A. Resolution: a survey. Journal of the Optical Society of America A 14, 547-557 (1997). doi: 10.1364/JOSAA.14.000547 |
[18] |
Faridian, A. et al. Nanoscale imaging using deep ultraviolet digital holographic microscopy. Optics Express 18, 14159-14164 (2010). doi: 10.1364/OE.18.014159 |
[19] |
Lohmann, A. W. et al. Space-bandwidth product of optical signals and systems. Journal of the Optical Society of America A 13, 470-473 (1996). doi: 10.1364/JOSAA.13.000470 |
[20] |
Cox, I. J. & Sheppard, C. J. R. Information capacity and resolution in an optical system. Journal of the Optical Society of America A 3, 1152-1158 (1986). doi: 10.1364/JOSAA.3.001152 |
[21] |
Zheng, G. A., Horstmeyer, R. & Yang, C. H. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photonics 7, 739-745 (2013). doi: 10.1038/nphoton.2013.187 |
[22] |
Micó, V., Zalevsky, Z. & García, J. Optical superresolution: imaging beyond abbe's diffraction limit. Journal of Holography and Speckle 5, 110-123 (2009). doi: 10.1166/jhs.2009.1005 |
[23] |
Zalevsky, Z., Micó, V. & Garcia, J. Nanophotonics for optical super resolution from an information theoretical perspective: a review. Journal of Nanophotonics 3, 032502 (2009). doi: 10.1117/1.3184610 |
[24] |
Ueda, M. & Sato, T. Superresolution by holography. Journal of the Optical Society of America 61, 418-419 (1971). doi: 10.1364/JOSA.61.000418 |
[25] |
Ueda, M., Sato, T. & Kondo, M. Superresolution by multiple superposition of image holograms having different carrier frequencies. Optica Acta:International Journal of Optics 20, 403-410 (1973). doi: 10.1080/713818783 |
[26] |
Sato, T., Ueda, M. & Yamagish, G. Superresolution microscope using electrical superposition of holograms. Applied Optics 13, 406-408 (1974). doi: 10.1364/AO.13.000406 |
[27] |
Sato, T., Ueda, M. & Ikeda, T. Real time superresolution by means of an ultrasonic light diffractor and TV system. Applied Optics 13, 1318-1321 (1974). doi: 10.1364/AO.13.001318 |
[28] |
Kuznetsova, Y., Neumann, A. & Brueck, S. R. J. Imaging interferometric microscopy. Journal of the Optical Society of America A 25, 811-822 (2008). doi: 10.1364/JOSAA.25.000811 |
[29] |
Neumann, A., Kuznetsova, Y. & Brueck, S. R. J. Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination. Optics Express 16, 20477-20483 (2008). doi: 10.1364/OE.16.020477 |
[30] |
Micó, V. et al. Superresolution digital holographic microscopy for three-dimensional samples. Optics Express 16, 19260-19270 (2008). doi: 10.1364/OE.16.019260 |
[31] |
Hillman, T. R. et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy. Optics Express 17, 7873-7892 (2009). doi: 10.1364/OE.17.007873 |
[32] |
Bühl, J. et al. Digital synthesis of multiple off-axis holograms with overlapping Fourier spectra. Optics Communications 283, 3631-3638 (2010). doi: 10.1016/j.optcom.2010.05.038 |
[33] |
Gutzler, T. et al. Coherent aperture-synthesis, wide-field, high-resolution holographic microscopy of biological tissue. Optics Letters 35, 1136-1138 (2010). doi: 10.1364/OL.35.001136 |
[34] |
Granero, L. et al. Single-exposure super-resolved interferometric microscopy by RGB multiplexing in lensless configuration. Optics and Lasers in Engineering 82, 104-112 (2016). doi: 10.1016/j.optlaseng.2016.02.010 |
[35] |
Calabuig, A. et al. Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing. Optics Letters 36, 885-887 (2011). doi: 10.1364/OL.36.000885 |
[36] |
Calabuig, A. et al. Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor. Journal of the Optical Society of America A 28, 2346-2358 (2011). doi: 10.1364/JOSAA.28.002346 |
[37] |
Choi, Y. et al. Synthetic aperture microscopy for high resolution imaging through a turbid medium. Optics Letters 36, 4263-4265 (2011). doi: 10.1364/OL.36.004263 |
[38] |
Yuan, C. J. et al. Resolution improvement in digital holography by angular and polarization multiplexing. Applied Optics 50, B6-B11 (2011). doi: 10.1364/AO.50.0000B6 |
[39] |
Picazo-Bueno, J. Á. et al. Superresolved spatially multiplexed interferometric microscopy. Optics Letters 42, 927-930 (2017). doi: 10.1364/OL.42.000927 |
[40] |
Mico, V. et al. Synthetic aperture superresolution with multiple off-axis holograms. Journal of the Optical Society of America A 23, 3162-3170 (2006). doi: 10.1364/JOSAA.23.003162 |
[41] |
Kim, M. et al. High-speed synthetic aperture microscopy for live cell imaging. Optics Letters 36, 148-150 (2011). doi: 10.1364/OL.36.000148 |
[42] |
Micó, V., Zalevsky, Z. & Garcia, J. Superresolved common-path phase-shifting digital inline holographic microscopy using a spatial light modulator. Optics Letters 37, 4988-4990 (2012). doi: 10.1364/OL.37.004988 |
[43] |
Kuznetsova, Y., Neumann, A. & Brueck, S. R. J. Imaging interferometric microscopy - approaching the linear systems limits of optical resolution. Optics Express 15, 6651-6663 (2007). doi: 10.1364/OE.15.006651 |
[44] |
Mico, V., Zalevsky, Z. & García, J. Synthetic aperture microscopy using off-axis illumination and polarization coding. Optics Communications 276, 209-217 (2007). doi: 10.1016/j.optcom.2007.04.020 |
[45] |
Indebetouw, G. et al. Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms. Applied Optics 46, 993-1000 (2007). doi: 10.1364/AO.46.000993 |
[46] |
Mico, V. et al. Superresolved imaging in digital holography by superposition of tilted wavefronts. Applied Optics 45, 822-828 (2006). doi: 10.1364/AO.45.000822 |
[47] |
Mico, V. et al. Single-step superresolution by interferometric imaging. Optics Express 12, 2589-2596 (2004). doi: 10.1364/OPEX.12.002589 |
[48] |
Indebetouw, G., El Maghnouji, A. & Foster, R. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus. Journal of the Optical Society of America A 22, 892-898 (2005). doi: 10.1364/JOSAA.22.000892 |
[49] |
Cheng, C. J. et al. Superresolution imaging in synthetic aperture digital holographic microscopy. Proceedings of the IEEE 4th International Conference on Photonics. Melaka: IEEE, 2013. |
[50] |
Schwarz, C. J., Kuznetsova, Y. & Brueck, S. R. J. Imaging interferometric microscopy. Optics Letters 28, 1424-1426 (2003). doi: 10.1364/OL.28.001424 |
[51] |
Lee, D. J. & Weiner, A. M. Optical phase imaging using a synthetic aperture phase retrieval technique. Optics Express 22, 9380-9394 (2014). doi: 10.1364/OE.22.009380 |
[52] |
Mico, V. et al. Transverse resolution improvement using rotating-grating time-multiplexing approach. Journal of the Optical Society of America A 25, 1115-1129 (2008). doi: 10.1364/JOSAA.25.001115 |
[53] |
Lin, Y. C. et al. One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating. Optics Express 26, 12620-12631 (2018). doi: 10.1364/OE.26.012620 |
[54] |
Hussain, A. et al. Simple fringe illumination technique for optical superresolution. Journal of the Optical Society of America B 34, B78-B84 (2017). doi: 10.1364/JOSAB.34.000B78 |
[55] |
Hussain, A. et al. Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator. Optics Express 21, 9615-9623 (2013). doi: 10.1364/OE.21.009615 |
[56] |
Mudassar, A. A. A simplified holography based superresolution system. Optics and Lasers in Engineering 75, 27-38 (2015). doi: 10.1016/j.optlaseng.2015.06.006 |
[57] |
Hussain, A. & Mudassar, A. A. Optical super resolution using tilted illumination coupled with object rotation. Optics Communications 339, 34-40 (2015). doi: 10.1016/j.optcom.2014.11.061 |
[58] |
Hussain, A. & Mudassar, A. A. Holography based super resolution. Optics Communications 285, 2303-2310 (2012). doi: 10.1016/j.optcom.2012.01.022 |
[59] |
Phan, A. H., Park, J. H. & Kim, N. Super-resolution digital holographic microscopy for three dimensional sample using multipoint light source illumination. Japanese Journal of Applied Physics 50, 092503 (2011). doi: 10.1143/JJAP.50.092503 |
[60] |
Mudassar, A. A. & Hussain, A. Super-resolution of active spatial frequency heterodyning using holographic approach. Applied Optics 49, 3434-3441 (2010). doi: 10.1364/AO.49.003434 |
[61] |
Micó, V., García, J. & Zalevsky, Z. Axial superresolution by synthetic aperture generation. Journal of Optics A:Pure and Applied Optics 10, 125001 (2008). doi: 10.1088/1464-4258/10/12/125001 |
[62] |
Micó, V., Zalevsky, Z. & García, J. Edge processing by synthetic aperture superresolution in digital holographic microscopy. 3D Research 2, 1 (2011). |
[63] |
Kim, M. et al. Three-dimensional differential interference contrast microscopy using synthetic aperture imaging. Journal of Biomedical Optics 17, 026003 (2012). doi: 10.1117/1.JBO.17.2.026003 |
[64] |
Gao, P. et al. Phase-shifting Zernike phase contrast microscopy for quantitative phase measurement. Optics Letters 36, 4305-4307 (2011). doi: 10.1364/OL.36.004305 |
[65] |
Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Optics Communications 1, 153-156 (1969). doi: 10.1016/0030-4018(69)90052-2 |
[66] |
Kim, K., Yoon, J. & Park, Y. Large-scale optical diffraction tomography for inspection of optical plastic lenses. Optics Letters 41, 934-937 (2016). doi: 10.1364/OL.41.000934 |
[67] |
Charrière, F. et al. Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Optics Express 14, 7005-7013 (2006). doi: 10.1364/OE.14.007005 |
[68] |
Kim, K., Yoon, J. & Park, Y. Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica 2, 343-346 (2015). doi: 10.1364/OPTICA.2.000343 |
[69] |
Chen, M. et al. Multi-layer Born multiple-scattering model for 3D phase microscopy. Optica 7, 394-403 (2020). doi: 10.1364/OPTICA.383030 |
[70] |
Isikman, S. O. et al. Lens-free optical tomographic microscope with a large imaging volume on a chip. Proceedings of the National Academy of Sciences of the United States of America 108, 7296-7301 (2011). doi: 10.1073/pnas.1015638108 |
[71] |
Wang, J. et al. Airy-beam tomographic microscopy. Optica 7, 790-793 (2020). doi: 10.1364/OPTICA.389894 |
[72] |
Kuś, A. Real-time, multiplexed holographic tomography. Optics and Lasers in Engineering 149, 106783 (2022). doi: 10.1016/j.optlaseng.2021.106783 |
[73] |
Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517-522 (2015). doi: 10.1364/OPTICA.2.000517 |
[74] |
Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy 198, 82-87 (2000). doi: 10.1046/j.1365-2818.2000.00710.x |
[75] |
Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America 102, 13081-13086 (2005). doi: 10.1073/pnas.0406877102 |
[76] |
Gao, P., Pedrini, G. & Osten, W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. Optics Letters 38, 1328-1330 (2013). doi: 10.1364/OL.38.001328 |
[77] |
Chowdhury, S. et al. Refractive index tomography with structured illumination. Optica 4, 537-545 (2017). doi: 10.1364/OPTICA.4.000537 |
[78] |
Sánchez-Ortiga, E. et al. Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination. Optics Letters 39, 2086-2089 (2014). doi: 10.1364/OL.39.002086 |
[79] |
Lee, K. et al. Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Optics Letters 42, 999-1002 (2017). doi: 10.1364/OL.42.000999 |
[80] |
Hussain, A. & Fuentes, J. L. M. Resolution enhancement using simultaneous couple illumination. Journal of Optics 18, 105702 (2016). doi: 10.1088/2040-8978/18/10/105702 |
[81] |
Ganjkhani, Y. et al. Super-resolved Mirau digital holography by structured illumination. Optics Communications 404, 110-117 (2017). doi: 10.1016/j.optcom.2017.05.061 |
[82] |
Yuan, C. J. et al. Resolution enhancement of the microscopic imaging by unknown sinusoidal structured illumination with iterative algorithm. Applied Optics 56, F78-F83 (2017). doi: 10.1364/AO.56.000F78 |
[83] |
Yeh, L. H., Tian, L. & Waller, L. Structured illumination microscopy with unknown patterns and a statistical prior. Biomedical Optics Express 8, 695-711 (2017). doi: 10.1364/BOE.8.000695 |
[84] |
Zheng, J. J. et al. Digital holographic microscopy with phase-shift-free structured illumination. Photonics Research 2, 87-91 (2014). doi: 10.1364/PRJ.2.000087 |
[85] |
Chowdhury, S. & Izatt, J. Structured illumination diffraction phase microscopy for broadband, subdiffraction resolution, quantitative phase imaging. Optics Letters 39, 1015-1018 (2014). doi: 10.1364/OL.39.001015 |
[86] |
Lai, X. J. et al. Coded aperture structured illumination digital holographic microscopy for superresolution imaging. Optics Letters 43, 1143-1146 (2018). doi: 10.1364/OL.43.001143 |
[87] |
Chowdhury, S. & Izatt, J. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging. Biomedical Optics Express 4, 1795-1805 (2013). doi: 10.1364/BOE.4.001795 |
[88] |
Yuan, C. J., Feng, S. T. & Nie, S. P. Digital holographic microscopy by using structured illumination. Chinese Journal of Lasers 43, 0609003 (2016). doi: 10.3788/CJL201643.0609003 |
[89] |
Li, S. H. et al. Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination. Opt Express 26, 23572-23584 (2018). doi: 10.1364/OE.26.023572 |
[90] |
Chowdhury, S. et al. Structured illumination multimodal 3D-resolved quantitative phase and fluorescence sub-diffraction microscopy. Biomedical Optics Express 8, 2496-2518 (2017). doi: 10.1364/BOE.8.002496 |
[91] |
Meng, Z. et al. DL-SI-DHM: a deep network generating the high-resolution phase and amplitude images from wide-field images. Optics Express 29, 19247-19261 (2021). doi: 10.1364/OE.424718 |
[92] |
Shin, S. et al. Active illumination using a digital micromirror device for quantitative phase imaging. Optics Letters 40, 5407-5410 (2015). doi: 10.1364/OL.40.005407 |
[93] |
Goodman, J. W. Speckle Phenomena in Optics: Theory and Applications. (Englewood: Roberts & Co, 2006). |
[94] |
García, J., Zalevsky, Z. & Fixler, D. Synthetic aperture superresolution by speckle pattern projection. Optics Express 13, 6073-6078 (2005). doi: 10.1364/OPEX.13.006073 |
[95] |
Zheng, J. J. et al. Autofocusing and resolution enhancement in digital holographic microscopy by using speckle-illumination. Journal of Optics 17, 085301 (2015). doi: 10.1088/2040-8978/17/8/085301 |
[96] |
Park, Y. et al. Speckle-field digital holographic microscopy. Optics Express 17, 12285-12292 (2009). doi: 10.1364/OE.17.012285 |
[97] |
Liu, Y. et al. Dynamic speckle illumination digital holographic microscopy by doubly scattered system. Photonics 8, 276 (2021). doi: 10.3390/photonics8070276 |
[98] |
Yilmaz, H. et al. Speckle correlation resolution enhancement of wide-field fluorescence imaging. Optica 2, 424-429 (2015). doi: 10.1364/OPTICA.2.000424 |
[99] |
Choi, Y. et al. Overcoming the diffraction limit using multiple light scattering in a highly disordered medium. Physical Review Letters 107, 023902 (2011). doi: 10.1103/PhysRevLett.107.023902 |
[100] |
Baek, Y., Lee, K. & Park, Y. High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Physical Review Applied 10, 024053 (2018). doi: 10.1103/PhysRevApplied.10.024053 |
[101] |
Repetto, L., Piano, E. & Pontiggia, C. Lensless digital holographic microscope with light-emitting diode illumination. Optics Letters 29, 1132-1134 (2004). doi: 10.1364/OL.29.001132 |
[102] |
Micó, V. et al. Superresolved phase-shifting Gabor holography by CCD shift. Journal of Optics A:Pure and Applied Optics 11, 125408 (2009). doi: 10.1088/1464-4258/11/12/125408 |
[103] |
Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. Journal of the Optical Society of America A 15, 1662-1669 (1998). doi: 10.1364/JOSAA.15.001662 |
[104] |
Latychevskaia, T. & Fink, H. W. Resolution enhancement in digital holography by self-extrapolation of holograms. Optics Express 21, 7726-7733 (2013). doi: 10.1364/OE.21.007726 |
[105] |
Zhang, W. H. et al. Twin-image-free holography: a compressive sensing approach. Physical Review Letters 121, 093902 (2018). doi: 10.1103/PhysRevLett.121.093902 |
[106] |
Rong, L. et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation. Optics Express 22, 17236-17245 (2014). doi: 10.1364/OE.22.017236 |
[107] |
Rong, L. et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue. Scientific Reports 5, 8445 (2015). doi: 10.1038/srep08445 |
[108] |
Latychevskaia, T. & Fink, H. W. Coherent microscopy at resolution beyond diffraction limit using post-experimental data extrapolation. Applied Physics Letters 103, 204105 (2013). doi: 10.1063/1.4831985 |
[109] |
Di, J. L. et al. High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning. Applied Optics 47, 5654-5659 (2008). doi: 10.1364/AO.47.005654 |
[110] |
Micó, V., Ferreira, C. & García, J. Surpassing digital holography limits by lensless object scanning holography. Optics Express 20, 9382-9395 (2012). doi: 10.1364/OE.20.009382 |
[111] |
Massig, J. H. Digital off-axis holography with a synthetic aperture. Optics Letters 27, 2179-2181 (2002). doi: 10.1364/OL.27.002179 |
[112] |
Bianco, V., Paturzo, M. & Ferraro, P. Spatio-temporal scanning modality for synthesizing interferograms and digital holograms. Optics Express 22, 22328-22339 (2014). doi: 10.1364/OE.22.022328 |
[113] |
Granero, L. et al. Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information. Applied Optics 49, 845-857 (2010). doi: 10.1364/AO.49.000845 |
[114] |
Paturzo, M. et al. Super-resolution in digital holography by a two-dimensional dynamic phase grating. Optics Express 16, 17107-17118 (2008). doi: 10.1364/OE.16.017107 |
[115] |
Liu, C. Super-resolution digital holographic imaging method. Applied Physics Letters 81, 3143-3145 (2002). doi: 10.1063/1.1517402 |
[116] |
Greenbaum, A. et al. Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nature Methods 9, 889-895 (2012). doi: 10.1038/nmeth.2114 |
[117] |
Mudanyali, O. et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab on A Chip 10, 1417-1428 (2010). doi: 10.1039/c000453g |
[118] |
Wu, Y. C. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4-16 (2018). doi: 10.1016/j.ymeth.2017.08.013 |
[119] |
Wu, Y. C. et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging. Scientific Reports 6, 28601 (2016). doi: 10.1038/srep28601 |
[120] |
Mitome, M. Transport of intensity equation method and its applications, Microscopy, 70, 69–74 (2021). |
[121] |
Pedrini, G., Osten, W. & Zhang, Y. Wave-front reconstruction from a sequence of interferograms recorded at different planes. Optics Letters 30, 833-835 (2005). doi: 10.1364/OL.30.000833 |
[122] |
Allen, L. J. & Oxley, M. P. Phase retrieval from series of images obtained by defocus variation. Optics Communications 199, 65-75 (2001). doi: 10.1016/S0030-4018(01)01556-5 |
[123] |
Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform. Optics Letters 3, 27-29 (1978). doi: 10.1364/OL.3.000027 |
[124] |
Luo, W. et al. Synthetic aperture-based on-chip microscopy. Light:Science & Applications 4, e261 (2015). |
[125] |
Bishara, W. et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Optics Express 18, 11181-11191 (2010). doi: 10.1364/OE.18.011181 |
[126] |
Farsiu, S. et al. Fast and robust multiframe super resolution. IEEE Transactions on Image Processing 13, 1327-1344 (2004). doi: 10.1109/TIP.2004.834669 |
[127] |
Greenbaum, A. et al. Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Science Translational Medicine 6, 267ra175 (2014). |
[128] |
Bishara, W. et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab on A Chip 11, 1276-1279 (2011). doi: 10.1039/c0lc00684j |
[129] |
Bishara, W., Zhu, H. Y. & Ozcan, A. Holographic opto-fluidic microscopy. Optics Express 18, 27499-27510 (2010). doi: 10.1364/OE.18.027499 |
[130] |
McLeod, E. et al. Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab on A Chip 13, 2028-2035 (2013). doi: 10.1039/c3lc50222h |
[131] |
Greenbaum, A. et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Scientific Reports 3, 1717 (2013). doi: 10.1038/srep01717 |
[132] |
Feng, S. D. & Wu, J. G. Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source. Optics Express 25, 24735-24744 (2017). doi: 10.1364/OE.25.024735 |
[133] |
Wang, H. D. et al. Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy. Optica 3, 1422-1429 (2016). doi: 10.1364/OPTICA.3.001422 |
[134] |
Luo, W. et al. Pixel super-resolution using wavelength scanning. Light:Science & Applications 5, e16060 (2016). |
[135] |
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444 (2015). doi: 10.1038/nature14539 |
[136] |
Ongie, G. et al. Deep learning techniques for inverse problems in imaging. IEEE Journal on Selected Areas in Information Theory 1, 39-56 (2020). doi: 10.1109/JSAIT.2020.2991563 |
[137] |
Rivenson, Y., Wu, Y. C. & Ozcan, A. Deep learning in holography and coherent imaging. Light:Science & Applications 8, 85 (2019). |
[138] |
Zhang, G. et al. Fast phase retrieval in off-axis digital holographic microscopy through deep learning. Optics Express 26, 19388-19405 (2018). doi: 10.1364/OE.26.019388 |
[139] |
Xiao, W. et al. Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy. Biomedical Optics Express 10, 1613-1626 (2019). doi: 10.1364/BOE.10.001613 |
[140] |
Rivenson, Y. et al. Phase recovery and holographic image reconstruction using deep learning in neural networks. Light:Science & Applications 7, 17141 (2018). |
[141] |
Ding, H. et al. Auto-focusing and quantitative phase imaging using deep learning for the incoherent illumination microscopy system. Optics Express 29, 26385-26403 (2021). doi: 10.1364/OE.434014 |
[142] |
Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). doi: 10.1364/OPTICA.4.001437 |
[143] |
Nehme, E. et al. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018). doi: 10.1364/OPTICA.5.000458 |
[144] |
Liu, T. R. et al. Deep learning-based super-resolution in coherent imaging systems. Scientific Reports 9, 3926 (2019). doi: 10.1038/s41598-019-40554-1 |
[145] |
Ghosh, N. & Bhattacharya, K. Cube beam-splitter interferometer for phase shifting interferometry. Journal of Optics 38, 191-198 (2009). doi: 10.1007/s12596-009-0017-6 |
[146] |
McCann, M. T., Jin, K. H. & Unser, M. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Processing Magazine 34, 85-95 (2017). |
[147] |
Barbastathis, G., Ozcan, A. & Situ, G. On the use of deep learning for computational imaging. Optica 6, 921-943 (2019). doi: 10.1364/OPTICA.6.000921 |
[148] |
Byeon, H., Go, T. & Lee, S. J. Deep learning-based digital in-line holographic microscopy for high resolution with extended field of view. Optics & Laser Technology 113, 77-86 (2019). |
[149] |
Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nature Methods 16, 1215-1225 (2019). doi: 10.1038/s41592-019-0458-z |
[150] |
de Haan, K. et al. Deep-learning-based image reconstruction and enhancement in optical microscopy. Proceedings of the IEEE 108, 30-50 (2020). doi: 10.1109/JPROC.2019.2949575 |
[151] |
Wang, F. et al. Phase imaging with an untrained neural network. Light:Science & Applications 9, 77 (2020). |
[152] |
Goodman, J. W. Introduction to Fourier Optics. 3rd edn. (Greenwoood Village: Roberts & Company Publishers, 2005). |
[153] |
Rogers, E. T. F. et al. A super-oscillatory lens optical microscope for subwavelength imaging. Nature Materials 11, 432-435 (2012). doi: 10.1038/nmat3280 |