[1] Sahasrabudhe, S. N. et al. Density, viscosity, and surface tension of five vegetable oils at elevated temperatures: measurement and modeling. International Journal of Food Properties 20, 1965-1981 (2017).
[2] Meyer, J. P. et al. The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models. Heat Transfer Engineering 37, 387-421 (2016). doi: 10.1080/01457632.2015.1057447
[3] Abbas, K. A. et al. Suitability of viscosity measurement methods for liquid food variety and applicability in food industry - A review. Journal of Food Agriculture and Environment 8, 100-107 (2010).
[4] Nour, M. A. & Hussain, M. M. A review of the real-time monitoring of fluid-properties in tubular architectures for industrial applications. Sensors 20, 3907 (2020). doi: 10.3390/s20143907
[5] Cheng, J. et al. Measurement and calculation of the viscosity of metals-a review of the current status and developing trends. Measurement Science and Technology 25, 062001 (2014). doi: 10.1088/0957-0233/25/6/062001
[6] Hintermüller, M. A., Offenzeller, C. & Jakoby, B. A microfluidic viscometer with capacitive readout using screen-printed electrodes. IEEE Sensors Journal 21, 2565-2572 (2021).
[7] Li, Y. Z., Ward, K. R. & Burns, M. A. Viscosity Measurements Using Microfluidic Droplet Length. Analytical Chemistry 89, 3996-4006 (2017). doi: 10.1021/acs.analchem.6b04563
[8] André, E. et al. A new way to measure viscosity in droplet-based microfluidics for high throughput analysis. Soft Matter 15, 504-514 (2019). doi: 10.1039/C8SM02372G
[9] Mustafa, A. et al. A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids. Analytica Chimica Acta 1135, 107-115 (2020). doi: 10.1016/j.aca.2020.07.039
[10] Malvar, O. et al. Highly sensitive measurement of liquid density in air using suspended microcapillary resonators. Sensors 15, 7650-7657 (2015). doi: 10.3390/s150407650
[11] Khan, M. F. et al. Online measurement of mass density and viscosity of pL fluid samples with suspended microchannel resonator. Sensors and Actuators B:Chemical 185, 456-461 (2013). doi: 10.1016/j.snb.2013.04.095
[12] Son, S. et al. Suspended microchannel resonators for ultralow volume universal detection. Analytical Chemistry 80, 4757-4760 (2008). doi: 10.1021/ac800307a
[13] Toledo, J. et al. Piezoelectric resonators and oscillator circuit based on higher-order out-of-plane modes for density-viscosity measurements of liquids. Journal of Micromechanics and Microengineering 26, 084012 (2016). doi: 10.1088/0960-1317/26/8/084012
[14] Singh, P. et al. A comprehensive review on MEMS-based viscometers. Sensors and Actuators A:Physical 338, 113456 (2022). doi: 10.1016/j.sna.2022.113456
[15] Wang, G., Tan, C. & Li, F. X. A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever. Sensors and Actuators A:Physical 267, 401-408 (2017). doi: 10.1016/j.sna.2017.10.041
[16] Nguyen, T. V. et al. Viscosity measurement based on the tapping-induced free vibration of sessile droplets using MEMS-based piezoresistive cantilevers. Lab on a Chip 15, 3670-3676 (2015). doi: 10.1039/C5LC00661A
[17] Han, K. W., Zhu, K. Y. & Bahl, G. Opto-mechano-fluidic viscometer. Applied Physics Letters 105, 014103 (2014). doi: 10.1063/1.4887369
[18] Fedorchenko, A. I., Stachiv, I. & Wang, A. B. The optical viscometer based on the vibrating fiber partially submerged in fluid. Sensors and Actuators B:Chemical 142, 111-117 (2009). doi: 10.1016/j.snb.2009.07.028
[19] Basumatary, T. et al. Fiber optic viscometer based on sliding of liquid drop under gravity on inclined flow channel. IEEE Transactions on Instrumentation and Measurement 65, 930-938 (2016). doi: 10.1109/TIM.2016.2516259
[20] Gomes, A. D. et al. Optical fiber probe viscometer based on hollow capillary tube. Journal of Lightwave Technology 37, 4456-4461 (2019). doi: 10.1109/JLT.2019.2890953
[21] Haidekker, M. A. et al. Optical fiber-based fluorescent viscosity sensor. Optics Letters 31, 2529-2531 (2006). doi: 10.1364/OL.31.002529
[22] Wang, Y. N. et al. Viscosity sensitive endoplasmic reticulum fluorescent probes based on oxazolopyridinium. Journal of Materials Chemistry B 9, 5664-5669 (2021). doi: 10.1039/D1TB01106E
[23] Oliveira, R. A. et al. Compact dip-style viscometer based on the acousto-optic effect in a long period fiber grating. Sensors and Actuators B:Chemical 157, 621-626 (2011). doi: 10.1016/j.snb.2011.05.035
[24] Wang, J. N. & Tang, J. L. An optical fiber viscometer based on long-period fiber grating technology and capillary tube mechanism. Sensors 10, 11174-11188 (2010). doi: 10.3390/s101211174
[25] Keen, S. et al. Multipoint viscosity measurements in microfluidic channels using optical tweezers. Lab on a Chip 9, 2059-2062 (2009). doi: 10.1039/b900934e
[26] Statsenko, A., Inami, W. & Kawata, Y. Measurement of viscosity of liquids using optical tweezers. Optics Communications 402, 9-13 (2017). doi: 10.1016/j.optcom.2017.05.034
[27] Chaudhary, K., Munjal, P. & Singh, K. P. Universal Stokes's nanomechanical viscometer. Scientific Reports 11, 14365 (2021). doi: 10.1038/s41598-021-93729-0
[28] DenBaars, S. P. et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Materialia 61, 945-951 (2013). doi: 10.1016/j.actamat.2012.10.042
[29] Crawford, M. H. LEDs for solid-state lighting: performance challenges and recent advances. IEEE Journal of Selected Topics in Quantum Electronics 15, 1028-1040 (2009).
[30] Wang, Y. J. et al. Full-duplex light communication with a monolithic multicomponent system. Light:Science & Applications 7, 83 (2018).
[31] Li, K. H. et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 5, 564-569 (2018). doi: 10.1364/OPTICA.5.000564
[32] Jiang, Y., Liu, P. Z. & Wang, Y. J. Experimental demonstration and theoretical analysis of simultaneous emission–detection phenomenon. ACS Omega 7, 14017-14021 (2022). doi: 10.1021/acsomega.2c00562
[33] Martin, R. W. et al. Exciton localization and the Stokes' shift in InGaN epilayers. Applied Physics Letters 74, 263-265 (1999). doi: 10.1063/1.123275
[34] Li, K. H. et al. InGaN RGB light-emitting diodes with monolithically integrated photodetectors for stabilizing color chromaticity. IEEE Transactions on Industrial Electronics 67, 5154-5160 (2020). doi: 10.1109/TIE.2019.2926038
[35] Murphy, E. C. et al. Tailoring properties and processing of Sylgard 184: curing time, adhesion, and water affinity. Journal of Applied Polymer Science 137, 48530 (2020). doi: 10.1002/app.48530
[36] Comparison of viscometer instrument categories. (2018). athttps://wiki.anton-paar.com/en/comparison-of-viscometer-instrument-categories URL
[37] Thalhammer, R. et al. Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator. IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control 45, 1331-1340 (1998). doi: 10.1109/58.726459
[38] Noël, M. H. et al. Viscometer using drag force measurements. Review of Scientific Instruments 82, 023909 (2011). doi: 10.1063/1.3556445
[39] Yin, J. et al. Performance of InGaN green light-emitting diodes with on-chip photodetectors based on wire-bonding and flip-chip configurations. Applied Optics 60, 2599-2603 (2021). doi: 10.1364/AO.419162