[1] |
Zhang, P. et al. Perovskite solar cells with zno electron-transporting materials. Advanced Materials 30, 1703737 (2018). doi: 10.1002/adma.201703737 |
[2] |
Gatou, M. A. et al. ZnO nanoparticles from different precursors and their photocatalytic potential for biomedical use. Nanomaterials 13, 122 (2023). |
[3] |
Filice, S. et al. AZO nanoparticles-decorated CNTs for UV light sensing: a structural, chemical, and electro-optical investigation. Nanomaterials 13 , 215 (2023). |
[4] |
Özgür, Ü. et al. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301 (2005). doi: 10.1063/1.1992666 |
[5] |
Madhavanunni Rekha, S., Vadakke Neelamana, H. & Bhat, S. V. Recent advances in solution-processed zinc oxide thin films for ultraviolet photodetectors. ACS Applied Electronic Materials 5, 4051-4066 (2023). doi: 10.1021/acsaelm.3c00563 |
[6] |
Yin, J. F. et al. Large scale assembly of nanomaterials: mechanisms and applications. Nanoscale 12, 17571-17589 (2020). doi: 10.1039/D0NR04156D |
[7] |
Manjunath, G. et al. A scalable screen-printed high performance ZnO-UV and Gas Sensor: effect of solution combustion. Materials Science in Semiconductor Processing 107, 104828 (2020). doi: 10.1016/j.mssp.2019.104828 |
[8] |
Tran, V. T. et al. All-inkjet-printed flexible ZnO micro photodetector for a wearable UV monitoring device. Nanotechnology 28, 095204 (2017). doi: 10.1088/1361-6528/aa57ae |
[9] |
Garlapati, S. K. et al. Printed electronics based on inorganic semiconductors: from processes and materials to devices. Advanced Materials 30, 1707600 (2018). doi: 10.1002/adma.201707600 |
[10] |
Fukuda, K. & Someya, T. Recent progress in the development of printed thin-film transistors and circuits with high-resolution printing technology. Advanced Materials 29, 1602736 (2017). doi: 10.1002/adma.201602736 |
[11] |
Yeh, C. C., Zan, H. W. & Soppera, O. Solution-based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications. Advanced Materials 30, 1800923 (2018). doi: 10.1002/adma.201800923 |
[12] |
Hong, S. et al. Digital selective laser methods for nanomaterials: From synthesis to processing. Nano Today 11, 547-564 (2016). doi: 10.1016/j.nantod.2016.08.007 |
[13] |
Wei, C. et al. An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales. International Journal of Extreme Manufacturing 3, 012003 (2021). doi: 10.1088/2631-7990/abce04 |
[14] |
Manshina, A. A. et al. The second laser revolution in chemistry: emerging laser technologies for precise fabrication of multifunctional nanomaterials and nanostructures. Advanced Functional Materials 34, 2405457 (2024). doi: 10.1002/adfm.202405457 |
[15] |
Pinheiro, T. et al. Direct laser writing: from materials synthesis and conversion to electronic device processing. Advanced Materials 36, 2402014 (2024). doi: 10.1002/adma.202402014 |
[16] |
Ko, S. H. et al. High resolution selective multilayer laser processing by nanosecond laser ablation of metal nanoparticle films. Journal of Applied Physics 102, 093102 (2007). doi: 10.1063/1.2802302 |
[17] |
Kang, B. et al. Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Optics Express 19, 2573-2579 (2011). doi: 10.1364/OE.19.002573 |
[18] |
Pan, H. et al. Melt-mediated coalescence of solution-deposited ZnO nanoparticles by excimer laser annealing for thin-film transistor fabrication. Applied Physics A 94, 111-115 (2009). doi: 10.1007/s00339-008-4925-0 |
[19] |
Fujii, S. et al. Simultaneous formation and spatial patterning of ZnO on ITO surfaces by local laser-induced generation of microbubbles in aqueous solutions of[Zn(NH3)4]2+. ACS Applied Materials & Interfaces 9, 8413-8419 (2017). |
[20] |
El-Kady, M. F. et al. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326-1330 (2012). doi: 10.1126/science.1216744 |
[21] |
Kindle, C. et al. Direct laser writing from aqueous precursors for nano to microscale topographical control, integration, and synthesis of nanocrystalline mixed metal oxides. ACS Applied Nano Materials 2, 2581-2586 (2019). doi: 10.1021/acsanm.9b00360 |
[22] |
Yeo, J. et al. Rapid, one-step, digital selective growth of ZnO nanowires on 3D structures using laser induced hydrothermal growth. Advanced Functional Materials 23, 3316-3323 (2013). doi: 10.1002/adfm.201203863 |
[23] |
Yeo, J. et al. Laser-induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design. ACS Nano 9, 6059-6068 (2015). doi: 10.1021/acsnano.5b01125 |
[24] |
Hong, S. et al. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate. Nanoscale 5, 3698-3703 (2013). doi: 10.1039/c3nr34346d |
[25] |
Son, Y. et al. Nanoscale electronics: digital fabrication by direct femtosecond laser processing of metal nanoparticles. Advanced Materials 23, 3176-3181 (2011). doi: 10.1002/adma.201100717 |
[26] |
Xiong, W. et al. Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics 8, 351-378 (2015). doi: 10.1007/s12200-015-0481-3 |
[27] |
Sugioka, K. Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. International Journal of Extreme Manufacturing 1, 012003 (2019). doi: 10.1088/2631-7990/ab0eda |
[28] |
Jia, Y. C., Wang, S. X. & Chen, F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electronic Advances 3, 190042 (2020). doi: 10.29026/oea.2020.190042 |
[29] |
An, J. N. et al. Single-step selective laser writing of flexible photodetectors for wearable optoelectronics. Advanced Science 5, 1800496 (2018). doi: 10.1002/advs.201800496 |
[30] |
Qu, M. L. et al. Dry-wet hybrid direct printing of laser-induced graphene and zinc oxide nanoribbons for continuous-flow manufacturing of flexible wearable photodetectors. Advanced Materials Technologies 9, 2302056 (2024). doi: 10.1002/admt.202302056 |
[31] |
Long, J. et al. Directional assembly of ZnO nanowires via three-dimensional laser direct writing. Nano Letters 20, 5159-5166 (2020). doi: 10.1021/acs.nanolett.0c01378 |
[32] |
Christou, A. et al. Printing of nano- to chip-scale structures for flexible hybrid electronics. Advanced Electronic Materials 9, 2201116 (2023). doi: 10.1002/aelm.202201116 |
[33] |
Yang, D. W. et al. Sunscreen-inspired ZnO/PEG composites for flexible ultraviolet photodetectors with a giant on–off ratio. ACS Photonics 10, 1320-1327 (2023). |
[34] |
Yalagala, B. P., Dahiya, A. S. & Dahiya, R. ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics. Opto-Electronic Advances 6, 220020 (2023). doi: 10.29026/oea.2023.220020 |
[35] |
Liu, X. et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nature Communications 5, 4007 (2014). doi: 10.1038/ncomms5007 |
[36] |
Znaidi, L. et al. Oriented ZnO thin films synthesis by sol–gel process for laser application. Thin Solid Films 428, 257-262 (2003). doi: 10.1016/S0040-6090(02)01219-1 |
[37] |
Yoon, S. H. et al. Effect of chelating agents on the preferred orientation of ZnO films by sol-gel process. Journal of Materials Science 43, 6177-6181 (2008). doi: 10.1007/s10853-008-2929-y |
[38] |
Znaidi, L. Sol–gel-deposited ZnO thin films: a review. Materials Science and Engineering: B 174, 18-30 (2010). doi: 10.1016/j.mseb.2010.07.001 |
[39] |
Claros, M. et al. AACVD synthesis and characterization of iron and copper oxides modified ZnO structured films. Nanomaterials 10 , 471 (2020). |
[40] |
Pronin, I. A. et al. Control over the surface properties of zinc oxide powders via combining mechanical, electron beam, and thermal processing. Nanomaterials 12, 1924 (2022). doi: 10.3390/nano12111924 |
[41] |
Kwan, Y. C. G., Ng, G. M. & Huan, C. H. A. Identification of functional groups and determination of carboxyl formation temperature in graphene oxide using the XPS O 1s spectrum. Thin Solid Films 590, 40-48 (2015). doi: 10.1016/j.tsf.2015.07.051 |
[42] |
Chen, C. H. et al. Low-temperature solution-processed flexible metal oxide thin-film transistors via laser annealing. Journal of Physics D: Applied Physics 52, 385105 (2019). doi: 10.1088/1361-6463/ab2c51 |
[43] |
Wang, Z. G. et al. A facile approach for the preparation of nano-size zinc oxide in water/glycerol with extremely concentrated zinc sources. Nanoscale Research Letters 13, 202 (2018). doi: 10.1186/s11671-018-2616-0 |
[44] |
Cristino, A. F. et al. Glycerol role in nano oxides synthesis and catalysis. Catalysts 10, 1406 (2020). doi: 10.3390/catal10121406 |
[45] |
Liu, Z. P. et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process. The Journal of Physical Chemistry B 107, 12658-12661 (2003). doi: 10.1021/jp036023s |
[46] |
Gao, S. L. et al. Persistent photoconductivity of metal oxide semiconductors. ACS Applied Electronic Materials 6, 1542-1561 (2024). doi: 10.1021/acsaelm.3c01549 |
[47] |
Soci, C. et al. ZnO nanowire UV photodetectors with high internal gain. Nano Letters 7, 1003-1009 (2007). doi: 10.1021/nl070111x |