[1] Ali, M. U. et al. Towards a smarter battery management system for electric vehicle applications: a critical review of lithium-ion battery state of charge estimation. Energies 12, 446 (2019). doi: 10.3390/en12030446
[2] Zhang, X. H., et al. A review on thermal management of lithium-ion batteries for electric vehicles. Energy 238, 121652 (2022). doi: 10.1016/j.energy.2021.121652
[3] Zhang, H. L. et al. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. Journal of Materials Chemistry A 6, 20564-20620 (2018). doi: 10.1039/C8TA05336G
[4] Essl, C. et al. Early detection of failing automotive batteries using gas sensors. Batteries 7, 25 (2021). doi: 10.3390/batteries7020025
[5] Wang, Q. S. et al. Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 55, 93-114 (2019). doi: 10.1016/j.nanoen.2018.10.035
[6] Li, Y. P. et al. Operando decoding of surface strain in anode-free lithium metal batteries via optical fiber sensor. Advanced Science 9, 2203247 (2022). doi: 10.1002/advs.202203247
[7] Miao, Z. Y. et al. Direct optical fiber monitor on stress evolution of the sulfur-based cathodes for lithium-sulfur batteries. Energy & Environmental Science 15, 2029-2038 (2022).
[8] Zhang, Y. et al. Health monitoring by optical fiber sensing technology for rechargeable batteries. eScience 4, 100174 (2024 doi: 10.1016/j.esci.2023.100174
[9] Dotoli, M. et al. A review of mechanical and chemical sensors for automotive li-ion battery systems. Sensors 22, 1763 (2022). doi: 10.3390/s22051763
[10] Li, S. X. et al. Room temperature resistive hydrogen sensor for early safety warning of li-ion batteries. Chemosensors 11, 344 (2023). doi: 10.3390/chemosensors11060344
[11] Wang, Z. et al. Gas sensing technology for the detection and early warning of battery thermal runaway: A review. Energy & Fuels 36, 6038-6057 (2022).
[12] Meng, X. N. et al. Ultrasensitive gas sensor based on Pd/SnS2/SnO2 nanocomposites for rapid detection of H2. Sensors and Actuators B: Chemical 359, 131612 (2022). doi: 10.1016/j.snb.2022.131612
[13] Na, C J. et al. An efficient tool for the continuous monitoring on adsorption of sub-ppm level gaseous benzene using an automated analytical system based on thermal desorption-gas chromatography/mass spectrometry approach. Environmental Research 182, 109024 (2020). doi: 10.1016/j.envres.2019.109024
[14] Di̇ltemi̇z, S. E. & Ecevi̇t, K. High-performance formaldehyde adsorption on CuO/ZnO composite nanofiber coated QCM sensors. Journal of Alloys and Compounds 783, 608-616 (2019). doi: 10.1016/j.jallcom.2018.12.237
[15] Shirsat, M. D. et al. Polyaniline nanowires-gold nanoparticles hybrid network based chemiresistive hydrogen sulfide sensor. Applied Physics Letters 94 083502 (2009).
[16] Zhang, H. Q. et al. Research on a fast-response thermal conductivity sensor based on carbon nanotube modification. Sensors 18, 2191 (2018). doi: 10.3390/s18072191
[17] Garzella, C. et al. TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sensors and Actuators B: Chemical 68, 189-196 (2000). doi: 10.1016/S0925-4005(00)00428-7
[18] Pathak, A. K. & Viphavakit, C. A review on all-optical fiber-based VOC sensors: heading towards the development of promising technology. Sensors and Actuators A: Physical 338, 113455 (2022). doi: 10.1016/j.sna.2022.113455
[19] Wu, Y. et al. Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing. Optics Letters 39, 1235-1237 (2014). doi: 10.1364/OL.39.001235
[20] Quan, M. R., Tian, J. J. & Yao, Y. Ultra-high sensitivity Fabry–Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect. Optics Letters 40, 4891-4894 (2015). doi: 10.1364/OL.40.004891
[21] Lopez-Torres, D. et al. Comparison between different structures of suspended-core microstructured optical fibers for volatiles sensing. Sensors 18, 2523 (2018). doi: 10.3390/s18082523
[22] Yang, L. Y. et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electronic Advances 5, 200076 (2022). doi: 10.29026/oea.2022.200076
[23] Yang, L. Y. et al. Multi-channel parallel ultrasound detection based on a photothermal tunable fiber optic sensor array. Optics Letters 47, 3700-3703 (2022). doi: 10.1364/OL.464148
[24] Sun, Y. Z. et al. Theoretical and experimental analysis of the directional RI sensing property of tilted fiber grating. Journal of Lightwave Technology 39, 674-681 (2021). doi: 10.1109/JLT.2020.3027947
[25] Sun, Y. Z. et al. Sensitivity adjustable biosensor based on graphene oxide coated excessively tilted fiber grating. Sensors and Actuators B: Chemical 351, 130832 (2022). doi: 10.1016/j.snb.2021.130832
[26] Li, L. Y. et al. Wearable alignment-free microfiber-based sensor chip for precise vital signs monitoring and cardiovascular assessment. Advanced Fiber Materials 4, 475-486 (2022). doi: 10.1007/s42765-021-00121-8
[27] Li, Y. P. et al. Immobilized optical fiber microprobe for selective and high sensitive glucose detection. Sensors and Actuators B: Chemical 255, 3004-3010 (2018). doi: 10.1016/j.snb.2017.09.123
[28] Li, L. Y. et al. Automatic and continuous blood pressure monitoring via an optical-fiber-sensor-assisted smartwatch. PhotoniX 4, 21 (2023). doi: 10.1186/s43074-023-00099-z
[29] Yao, B. C. et al. Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing. Optics Express 22, 28154-28162 (2014). doi: 10.1364/OE.22.028154
[30] Yu, C. B. et al. Miniature fiber-optic NH3 gas sensor based on Pt nanoparticle-incorporated graphene oxide. Sensors and Actuators B: Chemical 244, 107-113 (2017). doi: 10.1016/j.snb.2016.12.126
[31] Liu, H B., Yang, B. & Xue, N D. Enhanced adsorption of benzene vapor on granular activated carbon under humid conditions due to shifts in hydrophobicity and total micropore volume. Journal of Hazardous Materials 318, 425-432 (2016). doi: 10.1016/j.jhazmat.2016.07.026
[32] Pan, B. & Xing, B. S. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology 42, 9005-9013 (2008).
[33] Ning, X. P. et al. Zeolite thin film-coated spherical end-face fiber sensors for detection of trace organic vapors. Optics Communications 364, 55-59 (2016). doi: 10.1016/j.optcom.2015.11.023
[34] Liu, S. Q. et al. Novel sea urchin-like hollow core–shell SnO2 superstructures: facile synthesis and excellent ethanol sensing performance. Sensors and Actuators B: Chemical 151, 229-235 (2010). doi: 10.1016/j.snb.2010.09.015
[35] Campbell, M. G. et al. Chemiresistive sensor arrays from conductive 2D metal–organic frameworks. Journal of the American Chemical Society 137, 13780-13783 (2015). doi: 10.1021/jacs.5b09600
[36] Ma, X. X. et al. On-chip integration of a metal–organic framework nanomaterial on a SiO2 waveguide for sensitive VOC sensing. Lab on a Chip 21, 3298-3306 (2021). doi: 10.1039/D1LC00503K
[37] Vandezande, W. et al. Parts per million detection of alcohol vapors via metal organic framework functionalized surface plasmon resonance sensors. Analytical Chemistry 89, 4480-4487 (2017). doi: 10.1021/acs.analchem.6b04510
[38] Ravets, S. et al. Intermodal energy transfer in a tapered optical fiber: optimizing transmission. Journal of the Optical Society of America A 30, 2361-2371 (2013). doi: 10.1364/JOSAA.30.002361
[39] Huang, Y. et al. Ultrafast response optical microfiber interferometric VOC sensor based on evanescent field interaction with ZIF-8/graphene oxide nanocoating. Advanced Optical Materials 10, 2101561 (2022). doi: 10.1002/adom.202101561
[40] Hromadka, J. et al. Highly sensitive volatile organic compounds vapour measurements using a long period grating optical fibre sensor coated with metal organic framework ZIF-8. Sensors and Actuators B: Chemical 260, 685-692 (2018). doi: 10.1016/j.snb.2018.01.015
[41] Luebbers, M. T., et al. Effects of molecular sieving and electrostatic enhancement in the adsorption of organic compounds on the zeolitic imidazolate framework ZIF-8. Langmuir 26, 15625-15633 (2010). doi: 10.1021/la102582g