[1] Butkus, A., et al. Femtosecond-laser direct writing 3D micro/nano-lithography using VIS-light oscillator. J. Cent. South Univ. 29, 3270-3276 (2022).
[2] Skliutas, E., et al. Polymerization mechanisms initiated by spatio-temporally confined light. Nanophotonics 10, 1211-1242 (2021). doi: 10.1515/nanoph-2020-0551
[3] Yang, L., et al. Multi-material multi-photon 3d laser microand nanoprinting. Light Advanced Manufacturing 2, 296-312 (2021).
[4] Harinarayana, V. & Shin, Y. C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review. Optics & Laser Technology 142, 107180 (2021).
[5] O’alloran, S., et al. Two-photon polymerization: Fundamentals, materials, and chemical modification strategies. Advanced Science 10, 2204072 (2023). doi: 10.1002/advs.202204072
[6] Wang, H., et al. Two-photon polymerization lithography for optics and photonics: Fundamentals, materials, technologies, and applications. Advanced Functional Materials 33, 2214211 (2023). doi: 10.1002/adfm.202214211
[7] Farsari, M., Filippidis, G. & Fotakis, C. Fabrication of three-dimensional structures by three-photon polymerization. Optics Letters 30, 3180-3182 (2005). doi: 10.1364/OL.30.003180
[8] Li, L. J. & Fourkas, J. T. Multiphoton polymerization. Materials today 10, 30-37 (2007).
[9] LaFratta, C. N., et al. Multiphoton fabrication. Angewandte Chemie International Edition 46, 6238-6258 (2007). doi: 10.1002/anie.200603995
[10] Fischer, J., et al. Three-dimensional multi-photon direct laser writing with variable repetition rate. Optics Express 21, 26244-26260 (2013). doi: 10.1364/OE.21.026244
[11] Oakdale, J. S., et al. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography. Optics Express 24, 27077-27086 (2016). doi: 10.1364/OE.24.027077
[12] Schwärzle, D., et al. Polymer microstructures through two-photon crosslinking. Advanced Materials 29, 1703469 (2017). doi: 10.1002/adma.201703469
[13] Sun, M. M., et al. Modeling of two-photon polymerization in the strong-pulse regime. Additive Manufacturing 60, 103241 (2022). doi: 10.1016/j.addma.2022.103241
[14] Tanaka, T., Sun, H.-B. & Kawata, S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system. Applied Physics Letters 80, 312-314 (2002). doi: 10.1063/1.1432450
[15] Ovsianikov, A., et al. Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Optics Express 17, 2143-2148 (2009). doi: 10.1364/OE.17.002143
[16] Sun, Q., et al. Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses. Journal of Micromechanics and Microengineering 20, 035004 (2010). doi: 10.1088/0960-1317/20/3/035004
[17] Samsonas, D., et al. 3D nanopolymerization and damage threshold dependence on laser wavelength and pulse duration. Nanophotonics 12, 1537-1548 (2023). doi: 10.1515/nanoph-2022-0629
[18] Xing, J.-F., et al. Improving spatial resolution of two-photon microfabrication by using photoinitiator with high initiating efficiency. Applied Physics Letters 90, 131106 (2007). doi: 10.1063/1.2717532
[19] Lu, W.-E., et al. Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization. Journal of Materials Chemistry 21, 5650-5659 (2011). doi: 10.1039/c0jm04025h
[20] Emons, M., et al. Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses. Optical Materials Express 2, 942-947 (2012). doi: 10.1364/OME.2.000942
[21] Holzer, B., et al. Towards efficient initiators for two-photon induced polymerization: fine tuning of the donor/acceptor properties. Molecular Systems Design & Engineering 4, 437-448 (2019).
[22] Kiefer, P., et al. Sensitive photoresists for rapid multiphoton 3d laser micro- and nanoprinting. Adv. Opt. Mater. 8, 2000895 (2020). doi: 10.1002/adom.202000895
[23] Hahn, V., et al. Two-step absorption instead of two-photon absorption in 3D nanoprinting. Nature Photonics 15, 932-938 (2021). doi: 10.1038/s41566-021-00906-8
[24] Rekštytė, S., Malinauskas, M. & Juodkazis, S. Three-dimensional laser micro-sculpturing of silicone: towards bio-compatible scaffolds. Optics Express 21, 17028-17041 (2013). doi: 10.1364/OE.21.017028
[25] Zeng, H., et al. Alignment engineering in liquid crystalline elastomers: Free-form microstructures with multiple functionalities. Applied Physics Letters 106, 111902 (2015). doi: 10.1063/1.4915268
[26] Carlotti, M. & Mattoli, V. Functional materials for two-photon polymerization in microfabrication. Small 15, 1902687 (2019). doi: 10.1002/smll.201902687
[27] Perevoznik, D., et al. High-speed two-photon polymerization 3D printing with a microchip laser at its fundamental wavelength. Optics Express 27, 25119-25125 (2019). doi: 10.1364/OE.27.025119
[28] Ladika, D., et al. Synthesis and application of triphenylamine-based aldehydes as photo-initiators for multi-photon lithography. Applied Physics A 128, 745 (2022). doi: 10.1007/s00339-022-05887-1
[29] Liu, T. Q., et al. Ultrahigh-printing-speed photoresists for additive manufacturing. Nature Nanotechnology 19, 51-57 (2024). doi: 10.1038/s41565-023-01517-w
[30] Islam, S., Sangermano, M. & Klar, T. A. STED-Inspired Cationic Photoinhibition Lithography. The Journal of Physical Chemistry 127, 18736-18744 (2023).
[31] Wloka, T., Gottschaldt, M. & Schubert, U. S. From light to structure: Photo initiators for radical two-photon polymerization. Chemistry - A European Journal 28, e202104191 (2022). doi: 10.1002/chem.202104191
[32] Nguyen, A. K. & Narayan, R. J. Two-photon polymerization for biological applications. Materials today 20, 314-322 (2017). doi: 10.1016/j.mattod.2017.06.004
[33] Sharaf, A., et al. Suppression of auto-fluorescence from high-resolution 3D polymeric architectures fabricated via two-photon polymerization for cell biology applications. Micro and Nano Engineering 19, 100188 (2023). doi: 10.1016/j.mne.2023.100188
[34] Flamourakis, G., et al. Low-autofluorescence, transparent composite for multiphoton 3D printing. Optical Materials Express 11, 801-813 (2021).
[35] Bauer, J., et al. Thermal post-curing as an efficient strategy to eliminate process parameter sensitivity in the mechanical properties of two-photon polymerized materials. Optics Express 28, 20362-20371 (2020). doi: 10.1364/OE.395986
[36] Ristok, S., et al. Stitching-free 3D printing of millimeter-sized highly transparent spherical and aspherical optical components. Optical Materials Express 10, 2370-2378 (2020). doi: 10.1364/OME.401724
[37] Butkutė, A., et al. Optical damage thresholds of microstructures made by laser three-dimensional nanolithography. Optics Letters 45, 13-16 (2020). doi: 10.1364/OL.45.000013
[38] Jonušauskas, L., et al. Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers. Nanotechnology 27, 154001 (2016). doi: 10.1088/0957-4484/27/15/154001
[39] Malinauskas, M., et al. Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses. Optics Express 18, 10209-10221 (2010). doi: 10.1364/OE.18.010209
[40] Skliutas, E., et al. X-photon laser direct write 3D nanolithography. Virtual and Physical Prototyping 18, e2228324 (2023). doi: 10.1080/17452759.2023.2228324
[41] Taguchi, A., et al. Multiphoton-Excited Deep-Ultraviolet Photolithography for 3D Nanofabrication. ACS Applied Nano Materials 3, 11434-11441 (2020). doi: 10.1021/acsanm.0c02519
[42] Nakayama, A., et al. Photoinitiator-free two-photon polymerization of biocompatible materials for 3d micro/-nanofabrication. Advanced Optical Materials 10, 2200474 (2022). doi: 10.1002/adom.202200474
[43] Mueller, P., Thiel, M. & Wegener, M. 3D direct laser writing using a 405 nm diode laser. Optics Letters 39, 6847-6850 (2014). doi: 10.1364/OL.39.006847
[44] Cantoni, F., et al. Round-robin testing of commercial two-photon polymerization 3D printers. Additive Manufacturing 76, 103761 (2023). doi: 10.1016/j.addma.2023.103761
[45] Hahn, V., et al. Rapid Assembly of Small Materials Building Blocks (Voxels) into Large Functional 3D Metamaterials. Advanced Functional Materials 30, 1907795 (2020). doi: 10.1002/adfm.201907795
[46] Arslan, A., et al. Polymer architecture as key to unprecedented high-resolution 3D-printing performance: The case of biodegradable hexa-functional telechelic urethane-based poly-ε-caprolactone. Materials Today 44, 25-39 (2021). doi: 10.1016/j.mattod.2020.10.005
[47] Kiefer, P., et al. A multi-photon (7×7)-focus 3D laser printer based on a 3D-printed diffractive optical element and a 3dprinted multi-lens array. Light: Advanced Manufacturing 4, 28-41 (2024).
[48] Trautmann, A., et al. Scaffolds in a shell - a new approach combining one-photon and two-photon polymerization. Optics Express 26, 29659-29668 (2018). doi: 10.1364/OE.26.029659
[49] Zyla, G., et al. 3d micro-devices for enhancing the lateral resolution in optical microscopy. Light: Advanced Manufacturing 5, 19 (2024).
[50] Marini, M., et al. Microlenses fabricated by two-photon laser polymerization for cell imaging with non-linear excitation microscopy. Advanced Functional Materials 33, 2213926 (2023). doi: 10.1002/adfm.202213926
[51] Žukauskas, A., et al. Characterization of photopolymers used in laser 3D micro/nanolithography by means of laser-induced damage threshold (LIDT). Optical Materials Express 4, 1601-1616 (2014). doi: 10.1364/OME.4.001601
[52] Jeršovaitė, J., et al. Biocompatibility enhancement via post-processing of microporous scaffolds made by optical 3D printer. Frontiers in Bioengineering and Biotechnology 11, 1167753 (2023). doi: 10.3389/fbioe.2023.1167753
[53] Carve, M. & Wlodkowic, D. 3D-Printed Chips: Compatibility of Additive Manufacturing Photopolymeric Substrata with Biological Applications. Micromachines 9, 91 (2018). doi: 10.3390/mi9020091
[54] Skliutas, E. et al. Multiphoton 3d lithography. Nat. Rev. Meth. Pri. in press (2025).
[55] Lunzer, M., et al. Beyond the threshold: A study of chalcogenophene-based two-photon initiators. Chemistry of Materials 34, 3042-3052 (2022). doi: 10.1021/acs.chemmater.1c04002
[56] Jonušauskas, L., et al. Mesoscale laser 3D printing. Optics Express 27, 15205-15221 (2019). doi: 10.1364/OE.27.015205
[57] Malinauskas, M., et al. Ultrafast laser processing of materials: from science to industry. Light: Science & Applications 5, e16133-e16133 (2016).
[58] Li, Z.-Z., et al. Super stealth dicing of transparent solids with nanometric precision. Nature Photonics 18, 799-808 (2024). doi: 10.1038/s41566-024-01437-8
[59] Li, Z.-Z., et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light: Science & Applications 9, 41 (2020).
[60] Katsura, T. Thermal diffusivity of silica glass at pressures up to 9 GPa. Physics and Chemistry of Minerals 20, 201-208 (1993).
[61] Luther-Davies, B., et al. Picosecond high-repetition-rate pulsed laser ablation of dielectrics: The effect of energy accumulation between pulses. Optical Engineering 44, 051102 (2005). doi: 10.1117/1.1905363
[62] Rekštytė, S., et al. Nanoscale precision of 3D polymerisation via polarization control. Advanced Optical Materials 4, 1209-1214 (2016). doi: 10.1002/adom.201600155
[63] Hock Ng, S., Malinauskas, M. & Juodkazis, S. 3D subtractive printing with ultrashort laser pulses. In Handbook of Laser Micro- and Nano-Engineering (ed Sugioka, K.) 1227–1248 (Cham. Springer, 2021).
[64] Gamaly, E. G. & Rode, A. V. Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Applied Physics A 124, 278 (2018). doi: 10.1007/s00339-018-1693-3
[65] Lee, X. Y., et al. Automated detection of part quality during two-photon lithography via deep learning. Additive Manufacturing 36, 101444 (2020). doi: 10.1016/j.addma.2020.101444
[66] Arnoux, C., et al. Understanding and overcoming proximity effects in multi-spot two-photon direct laser writing. Addit. Manuf. 49, 102491 (2022).
[67] Zyla, G. & Farsari, M. Frontiers of laser-based 3d printing: A perspective on multi-photon lithography. Laser & Photonics Reviews 18, 2301312 (2024).
[68] Somers, P., et al. The physics of 3d printing with light. Nature Reviews Physics 6, 99-113 (2024).
[69] Flamourakis, G., et al. Laser-made 3D Auxetic Metamaterial Scaffolds for Tissue Engineering Applications. Macromolecular Materials and Engineering 305, 2000238 (2020). doi: 10.1002/mame.202000238
[70] Haske, W., et al. 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Optics Express 15, 3426-3436 (2007). doi: 10.1364/OE.15.003426
[71] Malinauskas, M., et al. Ultrafast laser nanostructuring of photopolymers: A decade of advances. Physics Reports 533, 1-31 (2013). doi: 10.1016/j.physrep.2013.07.005