[1] Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008). doi: 10.1038/nnano.2008.268
[2] Ma, Q. et al. Giant intrinsic photoresponse in pristine graphene. Nat. Nanotechnol. 14, 145–150 (2019). doi: 10.1038/s41565-018-0323-8
[3] Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). doi: 10.1038/s41586-019-1573-9
[4] Li, Q. T. et al. Transparent multispectral photodetectors mimicking the human visual system. Nat. Commun. 10, 4982 (2019). doi: 10.1038/s41467-019-12899-8
[5] Lien, M. B. et al. Ranging and light field imaging with transparent photodetectors. Nat. Photonics 14, 143–148 (2020). doi: 10.1038/s41566-019-0567-3
[6] Guo, J. S. et al. High-performance silicon−graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. Light: Sci. Appl. 9, 29 (2020).
[7] Chen, J. H. et al. An all-optical modulator based on a stereo graphene–microfiber structure. Light: Sci. Appl. 4, e360 (2015). doi: 10.1038/lsa.2015.133
[8] He, X. Y. et al. Investigation of phonon scattering on the tunable mechanisms of terahertz graphene metamaterials. Nanomaterials 10, 39 (2020).
[9] He, X. Y. et al. Tunable strontium titanate terahertz all-dielectric metamaterials. J. Phys. D. Appl. Phys. 53, 155105 (2020). doi: 10.1088/1361-6463/ab6ccc
[10] Nair, R. R. et al. Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008). doi: 10.1126/science.1156965
[11] Pan, R. et al. High-responsivity photodetectors based on formamidinium lead halide perovskite quantum dot-graphene hybrid. Part. Part. Syst. Charact. 35, 1700304 (2018). doi: 10.1002/ppsc.201700304
[12] Konstantatos, G. et al. Hybrid graphene–quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 7, 363–368 (2012). doi: 10.1038/nnano.2012.60
[13] Long, M. S. et al. Broadband photovoltaic detectors based on an atomically thin heterostructure. Nano Lett. 16, 2254–2259 (2016). doi: 10.1021/acs.nanolett.5b04538
[14] Yu, W. J. et al. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 8, 952–958 (2013). doi: 10.1038/nnano.2013.219
[15] Yang, T. F. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 8, 1906 (2017). doi: 10.1038/s41467-017-02093-z
[16] Wu, F. et al. High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nat. Commun. 10, 4663 (2019). doi: 10.1038/s41467-019-12707-3
[17] Wang, G. C. et al. Interlayer coupling induced infrared response in WS2/MoS2 heterostructures enhanced by surface Plasmon resonance. Adv. Funct. Mater. 28, 1800339 (2018). doi: 10.1002/adfm.201800339
[18] Bhuiyan, M. A. et al. Photoquantum hall effect and light-induced charge transfer at the interface of graphene/InSe heterostructures. Adv. Funct. Mater. 29, 1805491 (2019). doi: 10.1002/adfm.201805491
[19] Qin, S. C. et al. Planar graphene-C60-graphene heterostructures for sensitive UV-Visible photodetection. Carbon 146, 486–490 (2019). doi: 10.1016/j.carbon.2019.02.051
[20] Deng, J. N. et al. MoS2/HfO2/silicon-on-insulator dual-photogating transistor with ambipolar photoresponsivity for high-resolution light wavelength detection. Adv. Funct. Mater. 29, 1906242 (2019). doi: 10.1002/adfm.201906242
[21] Muench, J. E. et al. Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 19, 7632–7644 (2019). doi: 10.1021/acs.nanolett.9b02238
[22] Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020). doi: 10.1038/s41565-019-0602-z
[23] Han, J. Y. et al. Graphene/organic semiconductor heterojunction phototransistors with broadband and bi-directional photoresponse. Adv. Mater. 30, 1804020 (2018). doi: 10.1002/adma.201804020
[24] Chen, X. Q. et al. Improving the performance of graphene phototransistors using a heterostructure as the light-absorbing layer. Nano Lett. 17, 6391–6396 (2017). doi: 10.1021/acs.nanolett.7b03263
[25] Cakmakyapan, S. et al. Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light: Sci. Appl. 7, 20 (2018). doi: 10.1038/s41377-018-0020-2
[26] Gao, L. et al. Broadband, sensitive and spectrally distinctive SnS2 nanosheet/PbS colloidal quantum dot hybrid photodetector. Light: Sci. Appl. 5, e16126 (2016). doi: 10.1038/lsa.2016.126
[27] Wang, Y. et al. Negative photoconductance in van der waals heterostructure-based floating gate phototransistor. ACS Nano 12, 9513–9520 (2018). doi: 10.1021/acsnano.8b04885
[28] Gong, F. et al. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv. Funct. Mater. 26, 6084–6090 (2016). doi: 10.1002/adfm.201601346
[29] Liu, X. L. et al. Organic charge-transfer interface enhanced graphene hybrid phototransistors. Org. Electron. 64, 22–26 (2019). doi: 10.1016/j.orgel.2018.10.004
[30] Qin, S. C. et al. Sensitive and robust ultraviolet photodetector array based on self-assembled graphene/C60 Hybrid films. ACS Appl. Mater. Interfaces 10, 38326–38333 (2018). doi: 10.1021/acsami.8b11596
[31] Wang, X. D. et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27, 6575–6581 (2015). doi: 10.1002/adma.201503340
[32] Xie, C. et al. Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Sci. Appl. 6, e17023 (2017). doi: 10.1038/lsa.2017.23
[33] Cao, M. et al. Enhanced photoelectrical response of thermodynamically epitaxial organic crystals at the two-dimensional limit. Nat. Commun. 10, 756 (2019). doi: 10.1038/s41467-019-08573-8
[34] Fang, H. H. et al. Visible light-assisted high-performance mid-infrared photodetectors based on single InAs nanowire. Nano Lett. 16, 6416–6424 (2016). doi: 10.1021/acs.nanolett.6b02860
[35] Gao, X. D. et al. All-optical-input transistors: light-controlled enhancement of Plasmon-induced photocurrent. Adv. Funct. Mater. 28, 1802288 (2018). doi: 10.1002/adfm.201802288
[36] Lee, J., Jadhav, P. & Baldo, M. A. High efficiency organic multilayer photodetectors based on singlet exciton fission. Appl. Phys. Lett. 95, 033301 (2009). doi: 10.1063/1.3182787
[37] Kang, S. J. et al. Energy level diagrams of C60/pentacene/Au and pentacene/C60/Au. Synth. Met. 156, 32–37 (2006). doi: 10.1016/j.synthmet.2005.10.001
[38] Kim, K. et al. Structural and electrical investigation of C60-graphene vertical heterostructures. ACS Nano 29, 5922–5928 (2015).
[39] Liu, X. L. et al. Epitaxial ultrathin organic crystals on graphene for high-efficiency phototransistors. Adv. Mater. 28, 5200–5205 (2016). doi: 10.1002/adma.201600400
[40] Shokouh, S. H. H. et al. Molybdenum disulfide nanoflake-zinc oxide nanowire hybrid photoinverter. ACS Nano 8, 5174–5181 (2014). doi: 10.1021/nn501230v
[41] Kim, S. et al. Light sensing in a photoresponsive, organic-based complementary inverter. ACS Appl. Mater. Interfaces 3, 1451–1456 (2011). doi: 10.1021/am101284m
[42] Gao, L. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 32, 1906646 (2020). doi: 10.1002/adma.201906646
[43] Jeong, J. W. et al. Tunnelling-based ternary metal-oxide-semiconductor technology. Nat. Electron. 2, 307–312 (2019). doi: 10.1038/s41928-019-0272-8
[44] Chen, J. J. et al. Photovoltaic effect and evidence of carrier multiplication in graphene vertical homojunctions with asymmetrical metal contacts. ACS Nano 9, 8851–8858 (2015). doi: 10.1021/acsnano.5b02356