[1] Yu, G. B. et al. Moderate resolution imaging camera (MoRIC) of China’s first Mars mission Tianwen-1. Earth and Planetary Physics 4, 364-370 (2020).
[2] Durante, M. Space radiation protection: Destination Mars. Life Sciences in Space Research 1, 2-9 (2014). doi: 10.1016/j.lssr.2014.01.002
[3] Steffens, M. et al. Characterization of novel lightweight radiation shielding materials for space applications. IEEE Transactions on Nuclear Science 64, 2325-2332 (2017). doi: 10.1109/TNS.2017.2703312
[4] Eid, A. & Zawia, N. Consequences of lead exposure, and it's emerging role as an epigenetic modifier in the aging brain. Neurotoxicology 56, 254-261 (2016). doi: 10.1016/j.neuro.2016.04.006
[5] Ogawa, M. et al. Two cases of acute lead poisoning due to occupational exposure to lead. Clinical Toxicology 46, 332-335 (2008). doi: 10.1080/15563650701816448
[6] Hsiao, C. L., Wu, K. H. & Wan, K. S. Effects of environmental lead exposure on T-helper cell-specific cytokines in children. Journal of Immunotoxicology 8, 284-287 (2011). doi: 10.3109/1547691X.2011.592162
[7] Kim, J. H. Three principles for radiation safety: time, distance, and shielding. The Korean Journal of Pain 31, 145-146 (2018). doi: 10.3344/kjp.2018.31.3.145
[8] Wei, H. T. & Huang, J. S. Halide lead perovskites for ionizing radiation detection. Nature Communications 10, 1066 (2019). doi: 10.1038/s41467-019-08981-w
[9] Mahmoud, M. E. et al. Ceramic tiles doped with lead oxide nanoparticles: Their fabrication, physical, mechanical characteristics and γ-ray shielding performance. Radiation Physics and Chemistry 189, 109780 (2021). doi: 10.1016/j.radphyschem.2021.109780
[10] Bagheri, K. et al. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites. Radiation Physics and Chemistry 146, 5-10 (2018). doi: 10.1016/j.radphyschem.2017.12.024
[11] Aral, N., Banu, N. F. & Candan, C. An alternative X-ray shielding material based on coated textiles. Textile Research Journal 86, 803-811 (2016). doi: 10.1177/0040517515590409
[12] Aygün, H. H. & Alma, M. H. Bismuth (III) oxide/polyethylene terephthalate nanocomposite fiber coated polyester spunbonds for ionizing radiation protection. Applied Physics A 126, 693 (2020). doi: 10.1007/s00339-020-03880-0
[13] Prabhu, S., Bubbly, S. G. & Gudennavar, S. B. X-ray and γ-ray shielding efficiency of polymer composites: choice of fillers, effect of loading and filler size, photon energy and multifunctionality. Polymer Reviews https://doi.org/10.1080/15583724.2022.2067867 (2022).
[14] Nambiar, S. & Yeow, J. T. W. Polymer-composite materials for radiation protection. ACS Applied Materials & Interfaces 4, 5717-5726 (2012).
[15] Bijanu, A. et al. Metal-polymer composites for radiation protection: a review. Journal of Polymer Research 28, 392 (2021). doi: 10.1007/s10965-021-02751-3
[16] El-Khatib, A. M. et al. Gamma attenuation coefficients of nano cadmium oxide/high density polyethylene composites. Scientific Reports 9, 16012 (2019). doi: 10.1038/s41598-019-52220-7
[17] Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587-593 (2021). doi: 10.1038/s41586-021-03285-w
[18] Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nature Photonics 15, 148-155 (2021). doi: 10.1038/s41566-020-00732-4
[19] Liu, F. Y. et al. A rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis. Nano Letters 21, 1643-1650 (2021). doi: 10.1021/acs.nanolett.0c04299
[20] Li, Y. et al. Understanding the essential role of PbI2 films in a high-performance lead halide perovskite photodetector. The Journal of Physical Chemistry C 124, 15107-15114 (2020). doi: 10.1021/acs.jpcc.0c04488
[21] Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88-93 (2018). doi: 10.1038/s41586-018-0451-1
[22] Wang, Y. et al. Amphoteric imidazole doping induced large-grained perovskite with reduced defect density for high performance inverted solar cells. Solar Energy Materials and Solar Cells 212, 110553 (2020). doi: 10.1016/j.solmat.2020.110553
[23] Naphade, R. et al. Hybrid perovskite quantum nanostructures synthesized by electrospray antisolvent-solvent extraction and intercalation. ACS Applied Materials & Interfaces 8, 854-861 (2016).
[24] Wang, Q. et al. Comparison of carrier dynamic behavior and photocatalytic molecular oxygen activation of optimized MAPbX3 (X = I, Br). Journal of Environmental Chemical Engineering 8, 104241 (2020). doi: 10.1016/j.jece.2020.104241
[25] Holzer, H. & Dunand, D. C. Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites. Journal of Materials Research 14, 780-789 (1999). doi: 10.1557/JMR.1999.0104
[26] Wang, S. H. et al. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nature Energy 2, 16195 (2017). doi: 10.1038/nenergy.2016.195
[27] Yang, M. J. et al. Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%. Advanced Materials 27, 6363-6370 (2015). doi: 10.1002/adma.201502586
[28] Cao, D. et al. Gamma radiation shielding properties of poly (methyl methacrylate)/Bi2O3 composites. Nuclear Engineering and Technology 52, 2613-2619 (2020). doi: 10.1016/j.net.2020.04.026
[29] Waly, E. S. A., Fusco, M. A. & Bourham, M. A. Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials. Annals of Nuclear Energy 96, 26-30 (2016). doi: 10.1016/j.anucene.2016.05.028
[30] Maksoud, M. I. A. A. et al. Gamma radiation shielding properties of poly(vinyl butyral)/Bi2O3@BaZrO3 nanocomposites. Materials Chemistry and Physics 268, 124728 (2021). doi: 10.1016/j.matchemphys.2021.124728
[31] Sayyed, M. I. Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. Journal of Alloys and Compounds 695, 3191-3197 (2017). doi: 10.1016/j.jallcom.2016.11.318
[32] Eid, M. S. et al. Implementation of waste silicate glass into composition of ordinary cement for radiation shielding applications. Nuclear Engineering and Technology 54, 1456-1463 (2022). doi: 10.1016/j.net.2021.10.007
[33] Alsayed, Z. et al. Investigation of γ-ray attenuation coefficients, effective atomic number and electron density for ZnO/HDPE composite. Physica Scripta 95, 085301 (2020). doi: 10.1088/1402-4896/ab9a6e
[34] Al-Hadeethi, Y. et al. Fabrication of lead free borate glasses modified by bismuth oxide for gamma ray protection applications. Materials 15, 789 (2022). doi: 10.3390/ma15030789
[35] Abbas, M. I. et al. The influence of Bi2O3 nanoparticle content on the γ-ray interaction parameters of silicon rubber. Polymers 14, 1048 (2022). doi: 10.3390/polym14051048
[36] Dilsiz, K. et al. Evaluation of CdS doped polyester composites regarding gamma and neutron shielding properties. Progress in Nuclear Energy 139, 103865 (2021). doi: 10.1016/j.pnucene.2021.103865
[37] Kaçal, M. R. et al. Analysis of radiation attenuation properties for Polyester/Li2WO4 composites. Radiation Physics and Chemistry 179, 109257 (2021). doi: 10.1016/j.radphyschem.2020.109257
[38] Özkalaycı, F. et al. Lead(II) chloride effects on nuclear shielding capabilities of polymer composites. Journal of Physics and Chemistry of Solids 145, 109543 (2020). doi: 10.1016/j.jpcs.2020.109543
[39] El-Khatib, A. M. et al. Gamma radiation shielding properties of recycled polyvinyl chloride composites reinforced with micro/nano-structured PbO and CuO particles. Physica Scripta 96, 125316 (2021). doi: 10.1088/1402-4896/ac35c3
[40] Xu, W. et al. Spectroscopic study and electronic structure of prototypical iron porphyrins and their μ-oxo-dimer derivatives with different functional configurations. RSC Advances 4, 46399-46406 (2014). doi: 10.1039/C4RA04685D
[41] Meng, L. et al. Buckled silicene formation on Ir(111). Nano Letters 13, 685-690 (2013). doi: 10.1021/nl304347w
[42] Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Physical Review B 47, 558(R)-561(R) (1993). doi: 10.1103/PhysRevB.47.558
[43] Xu, Q. et al. Visual clarity methylammonium lead trichloride perovskite single crystals for X and gamma rays protection. Journal of Alloys and Compounds 810, 151896 (2019). doi: 10.1016/j.jallcom.2019.151896
[44] Alım, B. et al. Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiation Physics and Chemistry 166, 108455 (2020). doi: 10.1016/j.radphyschem.2019.108455
[45] Sayyed, M. I. & Lakshminarayana, G. Structural, thermal, optical features and shielding parameters investigations of optical glasses for gamma radiation shielding and defense applications. Journal of Non-Crystalline Solids 487, 53-59 (2018). doi: 10.1016/j.jnoncrysol.2018.02.014