[1] |
Caulfield, H. J. & Dolev, S. Why future supercomputing requires optics. Nat. Photonics 4, 261–263 (2010). doi: 10.1038/nphoton.2010.94 |
[2] |
Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014). doi: 10.1126/science.1242818 |
[3] |
Zhu, T. F. et al. Plasmonic computing of spatial differentiation. Nat. Commun. 8, 15391 (2017). doi: 10.1038/ncomms15391 |
[4] |
Guo, C. et al. Photonic crystal slab Laplace operator for image differentiation. Optica 5, 251–256 (2018). doi: 10.1364/OPTICA.5.000251 |
[5] |
Graves, A. et al. Hybrid computing using a neural network with dynamic external memory. Nature 538, 471–476 (2016). doi: 10.1038/nature20101 |
[6] |
Lane, N. D. et al. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Comput. 16, 82–88 (2017). doi: 10.1109/MPRV.2017.2940968 |
[7] |
Miller, D. A. B. Are optical transistors the logical next step? Nat. Photonics 4, 3–5 (2010). doi: 10.1038/nphoton.2009.240 |
[8] |
Wei, H. et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks. Nano Lett. 11, 471–475 (2011). doi: 10.1021/nl103228b |
[9] |
Wei, H. et al. Cascaded logic gates in nanophotonic plasmon networks. Nat. Commun. 2, 387 (2011). doi: 10.1038/ncomms1388 |
[10] |
Fu, Y. L. et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett. 12, 5784–5790 (2012). doi: 10.1021/nl303095s |
[11] |
Sang, Y. G. et al. Broadband multifunctional plasmonic logic gates. Adv. Opt. Mater. 6, 1701368 (2018). doi: 10.1002/adom.201701368 |
[12] |
Xu, Q. F. & Lipson, M. All-optical logic based on silicon micro-ring resonators. Opt. Express 15, 924–929 (2007). doi: 10.1364/OE.15.000924 |
[13] |
McCutcheon, M. W. et al. All-optical conditional logic with a nonlinear photonic crystal nanocavity. Appl. Phys. Lett. 95, 221102 (2009). doi: 10.1063/1.3265736 |
[14] |
Lee, S. W. et al. A fast and low-power microelectromechanical system-based non-volatile memory device. Nat. Commun. 2, 220 (2011). doi: 10.1038/ncomms1227 |
[15] |
Driscoll, T. et al. Memory metamaterials. Science 325, 1518–1521 (2009). doi: 10.1126/science.1176580 |
[16] |
Manjappa, M. et al. Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies. Nat. Commun. 9, 4056 (2018). doi: 10.1038/s41467-018-06360-5 |
[17] |
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018). doi: 10.1126/science.aat8084 |
[18] |
Raeker, B. O. & Grbic, A. Compound metaoptics for amplitude and phase control of wave fronts. Phys. Rev. Lett. 122, 113901 (2019). doi: 10.1103/PhysRevLett.122.113901 |
[19] |
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). doi: 10.1038/nature21056 |
[20] |
Goodman, J. W. Introduction to Fourier Optics 3rd edn (Roberts and Company, Greenwoood Village, 2005). |
[21] |
Cai, T. et al. High-performance bifunctional metasurfaces in transmission and reflection geometries. Adv. Opt. Mater. 5, 1600506 (2017). doi: 10.1002/adom.201600506 |
[22] |
Wu., L. W. et al. High-transmission ultrathin huygens' metasurface with 360° phase control by using double-layer transmitarray elements. Phys. Rev. Appl. 12, 024012 (2019). doi: 10.1103/PhysRevApplied.12.024012 |
[23] |
Qian, C. et al. Experimental observation of superscattering. Phys. Rev. Lett. 122, 063901 (2019). doi: 10.1103/PhysRevLett.122.063901 |
[24] |
Ye, D. X. et al. Observation of reflectionless absorption due to spatial Kramers–Kronig profile. Nat. Commun. 8, 51 (2017). doi: 10.1038/s41467-017-00123-4 |
[25] |
Yi, H. et al. 3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam. IEEE Trans. Antennas Propag. 64, 442–449 (2016). doi: 10.1109/TAP.2015.2505703 |
[26] |
Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019). doi: 10.1126/science.aaw2498 |
[27] |
Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics https://www.nature.com/articles/s41566-020-0604-2 (2020). |
[28] |
Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018). doi: 10.1038/s41566-018-0246-9 |
[29] |
Qian, C. et al. Transient response of a signal through a dispersive invisibility cloak. Opt. Lett. 41, 4911–4914 (2016). doi: 10.1364/OL.41.004911 |
[30] |
Qian, C. et al. Observing the transient buildup of a superscatterer in the time domain. Opt. Express 25, 4967–4974 (2017). doi: 10.1364/OE.25.004967 |
[31] |
Jang, M. et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics 12, 84–90 (2018). doi: 10.1038/s41566-017-0078-z |