[1] Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). doi: 10.1103/PhysRevLett.116.061102
[2] Abbott, B. P. et al. Binary black hole mergers in the first advanced LIGO observing run. Phys. Rev. X 6, 041015 (2016).
[3] Braginskiǐ, V. B. Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator. Sov. Phys. JETP 26, 831 (1968).
[4] Braginsky, V. B. & Khalili, F. J. Gravitational wave antenna with QND speed meter. Phys. Lett. A 147, 251–256 (1990). doi: 10.1016/0375-9601(90)90442-Q
[5] Danilishin, S. L. & Khalili, F. Y. Quantum measurement theory in gravitational-wave detectors. Living Rev. Relativ. 15, 5 (2012). doi: 10.12942/lrr-2012-5
[6] Danilishin, S. L. Sensitivity limitations in optical speed meter topology of gravitational-wave antennas. Phys. Rev. D. 69, 102003 (2004). doi: 10.1103/PhysRevD.69.102003
[7] Braginsky, V. B., Gorodetsky, M. L., Khalili, F. Y. & Thorne, K. S. Dual-resonator speed meter for a free test mass. Phys. Rev. D 61, 044002 (2000). doi: 10.1103/PhysRevD.61.044002
[8] Purdue, P. Analysis of a quantum nondemolition speed-meter interferometer. Phys. Rev. D 66, 022001 (2002). doi: 10.1103/PhysRevD.66.022001
[9] Purdue, P. & Chen, Y. B. Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys. Rev. D 66, 122004 (2002). doi: 10.1103/PhysRevD.66.122004
[10] Chen, Y. B. Sagnac interferometer as a speed-meter-type, quantum-nondemolition gravitational-wave detector. Phys. Rev. D 67, 122004 (2003). doi: 10.1103/PhysRevD.67.122004
[11] Danilishin, S. L. Quantum speed meter in laser gravitational antennas. Opt. Spectrosc. 96, 727–733 (2004). doi: 10.1134/1.1753638
[12] Wang, M. Y. et al. Realistic polarizing Sagnac topology with DC readout for the Einstein Telescope. Phys. Rev. D 87, 096008 (2013). doi: 10.1103/PhysRevD.87.096008
[13] Wade, A. R. et al. Polarization speed meter for gravitational-wave detection. Phys. Rev. D 86, 062001 (2012). doi: 10.1103/PhysRevD.86.062001
[14] Fritschel, P., Evans, M. & Frolov, V. Balanced homodyne readout for quantum limited gravitational wave detectors. Opt. Express 22, 4224–4234 (2014). doi: 10.1364/OE.22.004224
[15] Steinlechner, S. et al. Local-oscillator noise coupling in balanced homodyne readout for advanced gravitational wave detectors. Phys. Rev. D 92, 072009 (2015). doi: 10.1103/PhysRevD.92.072009
[16] Caves, C. M. & Schumaker, B. L. New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states. Phys. Rev. A 31, 3068–3092 (1985). doi: 10.1103/PhysRevA.31.3068
[17] Kimble, H. J., Levin, Y., Matsko, A. B., Thorne, K. S. & Vyatchanim, S. P. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D 65, 022002 (2002). doi: 10.1103/PhysRevD.65.022002
[18] Chen, Y. B. Macroscopic quantum mechanics: theory and experimental concepts of optomechanics. J. Phys. B At. Mol. Opt. Phys. 46, 104001 (2013). doi: 10.1088/0953-4075/46/10/104001
[19] Danilishin, S. L. et al. Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries. New. J. Phys. 17, 043031 (2015). doi: 10.1088/1367-2630/17/4/043031
[20] Saulson, P. R. Terrestrial gravitational noise on a gravitational wave antenna. Phys. Rev. D 30, 732–736 (1984). doi: 10.1103/PhysRevD.30.732
[21] Matichard, F. et al. Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance. Class. Quantum Grav. 32, 185003 (2015). doi: 10.1088/0264-9381/32/18/185003
[22] Cumming, A. V. et al. Design and development of the advanced LIGO monolithic fused silica suspension. Class. Quantum Grav. 29, 035003 (2012). doi: 10.1088/0264-9381/29/3/035003