[1] Chambonneau, M. et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser & Photonics Reviews 15, 2100140 (2021).
[2] Wang, A. et al. Three-dimensional luminescence microscopy for quantitative plasma characterization in bulk semiconductors. Applied Physics Letters 119, 041108 (2021). doi: 10.1063/5.0059431
[3] Kononenko, V. V., Konov, V. V. & Dianov, E. M. Delocalization of femtosecond radiation in silicon. Optics Letters 37, 3369-3371 (2012).
[4] Mouskeftaras, A. et al. Self-limited underdense microplasmas in bulk silicon induced by ultrashort laser pulses. Applied Physics Letters 105, 191103 (2014). doi: 10.1063/1.4901528
[5] Chanal, M. et al. Crossing the threshold of ultrafast laser writing in bulk silicon. Nature Communications 8, 773 (2017). doi: 10.1038/s41467-017-00907-8
[6] Wang, A. D., Das, A. & Grojo, D. Temporalcontrast imperfections as drivers for ultrafast laser modifications in bulk silicon. Physical Review Research 2, 033023 (2020). doi: 10.1103/PhysRevResearch.2.033023
[7] Wang, A. D., Das, A. & Grojo, D. Ultrafast laser writing deep inside silicon with thz-repetition-rate trains of pulses. Research 2020, 8149764 (2020).
[8] Wang, A. D., Sopeña, P. & Grojo, D. Burst mode enabled ultrafast laser inscription inside gallium arsenide. International Journal of Extreme Manufacturing 4, 045001 (2022). doi: 10.1088/2631-7990/ac8fc3
[9] Matthäus, G. et al. Inscription of silicon waveguides using picosecond pulses. Optics Express 26, 24089-24097 (2018). doi: 10.1364/OE.26.024089
[10] Chambonneau, M. et al. Competing nonlinear delocalization of light for laser inscription inside silicon with a 2-μm picosecond laser. Physical Review Applied 12, 024009 (2019). doi: 10.1103/PhysRevApplied.12.024009
[11] Ohmura, E. et al. Internal modified-layer formation mechanism into silicon with nanosecond laser. Journal of Achievements in Materials and Manufacturing Engineering 17, 381-384 (2006).
[12] Verburg, P. C., Römer, G. R. B. E. & In’t Veld, A. J. H. Two-photon-induced internal modification of silicon by erbium-doped fiber laser. Optics Express 22, 21958-21971 (2014). doi: 10.1364/OE.22.021958
[13] Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nature Photonics 11, 639-645 (2017). doi: 10.1038/s41566-017-0004-4
[14] Chambonneau, M. et al. Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses. Optics Letters 41, 4875-4878 (2016). doi: 10.1364/OL.41.004875
[15] Pavlov, I. et al. Femtosecond laser written waveguides deep inside silicon. Optics Letters 42, 3028-3031 (2017). doi: 10.1364/OL.42.003028
[16] Wang, X. Y. et al. Curved waveguides in silicon written by a shaped laser beam. Optics Express 29, 14201-14207 (2021). doi: 10.1364/OE.419074
[17] Chambonneau, M. et al. Inscribing diffraction gratings in bulk silicon with nanosecond laser pulses. Optics Letters 43, 6069-6072 (2018). doi: 10.1364/OL.43.006069
[18] Sugimoto, K., Matsuo, S. & Naoi, Y. Inscribing diffraction grating inside silicon substrate using a subnanosecond laser in one photon absorption wavelength. Scientific Reports 10, 21451 (2020). doi: 10.1038/s41598-020-78564-z
[19] Chambonneau, M. et al. Taming ultrafast laser filaments for optimized semiconductor–metal welding. Laser & Photonics Reviews 15, 2000433 (2021).
[20] Sopeña, P. et al. Transmission Laser Welding of Similar and Dissimilar Semiconductor Materials. Laser & Photonics Reviews 16, 2200208 (2022).
[21] Chambonneau, M. et al. Positive- and negativetone structuring of crystalline silicon by laser-assisted chemical etching. Optics Letters 44, 1619-1622 (2019). doi: 10.1364/OL.44.001619
[22] Duocastella, M. & Arnold, C. B. Bessel and annular beams for materials processing. Laser & Photonics Reviews 6, 607-621 (2012).
[23] Salter, P. S. & Booth, M. J. Adaptive optics in laser processing. Light: Science & Applications 8, 110 (2019).
[24] Grojo, D., Wang, A. & Das, A. Methods and systems for optical functionalisation of a sample made of semiconductor material. Patent, Application Number: EP2022/068835, Patent Number: WO2023280964A1 (2022).
[25] Sabet, R. A. et al. Laser nano-fabrication inside silicon with spatial beam modulation and non-local seeding. Print at https://arxiv.org/abs/2302.13105 (2023).
[26] Shcherbakov, M. et al. Nanoscale reshaping of resonant dielectric microstructures by light-driven explosions. Nature Communications 14, 6688 (2023). doi: 10.1038/s41467-023-42263-w
[27] Mitra, S. et al. Millijoule femtosecond micro-bessel beams for ultra-high aspect ratio machining. Applied Optics 54, 7358-7365 (2015). doi: 10.1364/AO.54.007358
[28] Grojo, D. et al. Limitations to laser machining of silicon using femtosecond micro-Bessel beams in the infrared. Journal of Applied Physics 117, 153105 (2015). doi: 10.1063/1.4918669
[29] He, F. et al. Tailoring femtosecond 1.5-μm bessel beams for manufacturing high-aspect-ratio throughsilicon vias. Scientific Reports 7, 40785 (2017). doi: 10.1038/srep40785
[30] Bhuyan, M. K. et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Applied Physics Letters 97, 081102 (2010). doi: 10.1063/1.3479419
[31] Belloni, V. V. et al. Generation of extremely high-angle Bessel beams. Applied Optics 62, 1765-1768 (2023). doi: 10.1364/AO.482826
[32] Bélanger, P. A. & Rioux, M. Ring pattern of a lens–axicon doublet illuminated by a gaussian beam. Applied Optics 17, 1080-1088 (1978). doi: 10.1364/AO.17.001080
[33] Zverev, D. et al. X-ray refractive parabolic axicon lens. Opt. Express 25, 28469-28477 (2017). doi: 10.1364/OE.25.028469
[34] Takanezawa, S., Saitou, T. & Imamura, T. Wide field light-sheet microscopy with lens-axicon controlled two-photon bessel beam illumination. Nature Communications 12, 2979 (2021). doi: 10.1038/s41467-021-23249-y
[35] Das, A. et al. Pulse-duration dependence of laserinduced modifications inside silicon. Optics Express 28, 26623-26635 (2020). doi: 10.1364/OE.398984
[36] McLeod, J. H. The axicon: A new type of optical element. Journal of the Optical Society of America 44, 592-597 (1954). doi: 10.1364/JOSA.44.000592
[37] Stoian, R. et al. Erratum to: Ultrafast bessel beams: advanced tools for laser materials processing. Advanced Optical Technologies 8, 535-535 (2019). doi: 10.1515/aot-2019-0029
[38] Perinchery, S. M. et al. High resolution iridocorneal angle imaging system by axicon lens assisted gonioscopy. Scientific Reports 6, 30844 (2016). doi: 10.1038/srep30844
[39] Ganguly, N. et al. Asymmetric shaping for ultrafast elliptical bessel-like beams. Photonics 10, 651 (2023). doi: 10.3390/photonics10060651
[40] Ganguly, N. Generation and characterization of elliptical ultrafast non-diffractive laser beams for application in laser processing. MSc thesis, University of Eastern Finland, Joensuu (2022).
[41] Li, Q. et al. Quantitative-phase microscopy of nanosecond laser-induced micro-modifications inside silicon. Applied Optics 55, 9577-9583 (2016). doi: 10.1364/AO.55.009577
[42] Lopez, J. et al. Percussion drilling in glasses and process dynamics with femtosecond laser GHz-bursts. Optics Express 30, 12533-12544 (2022). doi: 10.1364/OE.455553
[43] Drude, P. Zur elektronentheorie der metalle. Annalen der Physik 306, 566-613 (1900). doi: 10.1002/andp.19003060312
[44] Sokolowski-Tinten, K. & von der Linde, D. Generation of dense electron-hole plasmas in silicon. Physical Review B 61, 2643-2650 (2000). doi: 10.1103/PhysRevB.61.2643
[45] Rämer, A., Osmani, O. & Rethfeld, B. Laser damage in silicon: Energy absorption, relaxation, and transport. Journal of Applied Physics 116, 053508 (2014). doi: 10.1063/1.4891633
[46] Grojo, D. et al. Long-wavelength multiphoton ionization inside band-gap solids. Physical Review B 88, 195135 (2013). doi: 10.1103/PhysRevB.88.195135
[47] Mouskeftaras, A. et al. Direct measurement of ambipolar diffusion in bulk silicon by ultrafast infrared imaging of laser-induced microplasmas. Applied Physics Letters 108, 041107 (2016). doi: 10.1063/1.4941031
[48] Kämmer, H. et al. Origin of Waveguiding in Ultrashort Pulse Structured Silicon. Laser and Photonics Reviews 13, 1800268 (2019). doi: 10.1002/lpor.201800268
[49] Alexeev, I., K im, K. Y. & Milchberg, H. M. Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse. Physical review letters 88, 073901 (2002). doi: 10.1103/PhysRevLett.88.073901
[50] Turnbull, D. et al. Ionization Waves of Arbitrary Velocity. Physical Review Letters 120, 225001 (2018). doi: 10.1103/PhysRevLett.120.225001