[1] Fischbach, S. et al. Efficient single-photon source based on a deterministically fabricated single quantum dot - microstructure with backside gold mirror. Applied Physics Letters 111, 011106 (2017). doi: 10.1063/1.4991389
[2] Fischer, J. & Wegener, M. Three-dimensional optical laser lithography beyond the diffraction limit: 3D optical lithography off limits. Laser & Photonics Reviews 7, 22-44 (2013).
[3] Jonušauskas, L. et al. Optically Clear and Resilient Free-Form µ-Optics 3D-Printed via Ultrafast Laser Lithography. Materials 10, 12 (2017). doi: 10.3390/ma10010012
[4] Malinauskas, M. et al. Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization. Journal of Optics 12, 124010 (2010). doi: 10.1088/2040-8978/12/12/124010
[5] Guo, R. et al. Micro lens fabrication by means of femtosecond two photon photopolymerization. Optics Express 14, 810-816 (2006). doi: 10.1364/OPEX.14.000810
[6] Kumar, S., Tong, Z. & Jiang, X. Advances in the design and manufacturing of novel freeform optics. International Journal of Extreme Manufacturing 4, 032004 (2022). doi: 10.1088/2631-7990/ac7617
[7] Wang, H. et al. Toward Near-Perfect Diffractive Optical Elements via Nanoscale 3D Printing. ACS Nano 14, 10452-10461 (2020). doi: 10.1021/acsnano.0c04313
[8] Lightman, S. et. al. A. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 4, 605-610 (2017). doi: 10.1364/OPTICA.4.000605
[9] Gissibl, T. et. al. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Communications 7, 11763 (2016). doi: 10.1038/ncomms11763
[10] Gissibl, T., Schmid, M. & Giessen, H. Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing. Optica 3, 448-451 (2016). doi: 10.1364/OPTICA.3.000448
[11] Cojoc, G. et al. Optical micro-structures fabricated on top of optical fibers by means of two-photon photopolymerization. Microelectronic Engineering 87, 876-879 (2010). doi: 10.1016/j.mee.2009.12.046
[12] Bianchi, S. et al. Focusing and imaging with increased numerical apertures through multimode fibers with micro-fabricated optics. Optics Letters 38, 4935-4938 (2013). doi: 10.1364/OL.38.004935
[13] Parvathi Nair S, Trisno, J. , Wang, H. & Yang, J. K. W. 3D printed fiber sockets for plug and play micro-optics. International Journal of Extreme Manufacturing 3, 015301 (2020).
[14] Lightman, S. et al. Tailoring lens functionality by 3D laser printing. Applied Optics 56, 9038-9043 (2017). doi: 10.1364/AO.56.009038
[15] Chan, J. Y. E. et al. High-resolution light field prints by nanoscale 3D printing. Nature Communications 12, 3728 (2021). doi: 10.1038/s41467-021-23964-6
[16] Wang, H. et al. Optical Fireworks Based on Multifocal Three-Dimensional Color Prints. ACS Nano 15, 10185-10193 (2021). doi: 10.1021/acsnano.1c02131
[17] Liu, Y. et al. Structural color three-dimensional printing by shrinking photonic crystals. Nature Communications 10, 4340 (2019). doi: 10.1038/s41467-019-12360-w
[18] Raut, H. K. et al. Hierarchical Colorful Structures by Three-Dimensional Printing of Inverse Opals. Nano Letters 21, 8602-8608 (2021). doi: 10.1021/acs.nanolett.1c02483
[19] Wu, Y.-K. R. et al. Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit. Scientific Reports 3, 1194 (2013). doi: 10.1038/srep01194
[20] Højlund-Nielsen, E. et al. Angle-independent structural colors of silicon. J. Nanophotonics 8, 083988 (2014). doi: 10.1117/1.JNP.8.083988
[21] Zeng, B., Gao, Y. & Bartoli, F. J. Ultrathin Nanostructured Metals for Highly Transmissive Plasmonic Subtractive Color Filters. Scientific Reports 3, 2840 (2013). doi: 10.1038/srep02840
[22] Clausen, J. S. et al. Plasmonic Metasurfaces for Coloration of Plastic Consumer Products. Nano Letters 14, 4499-4504 (2014). doi: 10.1021/nl5014986
[23] Walia, J. et al. Color Generation and Refractive Index Sensing Using Diffraction from 2D Silicon Nanowire Arrays. Small 10, 144-151 (2014). doi: 10.1002/smll.201300601
[24] Goh, X. M. et al. Three-dimensional plasmonic stereoscopic prints in full colour. Nature Communications 5, 5361 (2014). doi: 10.1038/ncomms6361
[25] Roberts, A. S. et al. Subwavelength Plasmonic Color Printing Protected for Ambient Use. Nano Letters 14, 783-787 (2014). doi: 10.1021/nl404129n
[26] Cheng, F. et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption. Scientific Reports 5, 11045 (2015). doi: 10.1038/srep11045
[27] Wang, H. et al. Full Color and Grayscale Painting with 3D Printed Low-Index Nanopillars. Nano Letters 21, 4721-4729 (2021). doi: 10.1021/acs.nanolett.1c00979
[28] Muller, P., Feuerstein, R. & Zappe, H. Integrated Optofluidic Iris. Journal of Microelectromechanical Systems 21, 1156-1164 (2012). doi: 10.1109/JMEMS.2012.2196498
[29] Xu, M., Ren, H. & Lin, Y.-H. Electrically actuated liquid iris. Optics Letters 40, 831-834 (2015). doi: 10.1364/OL.40.000831
[30] Kanson, U. H. et al. Nano-aperture fabrication for single quantum dot spectroscopy. Nanotechnology 14, 675-679 (2003). doi: 10.1088/0957-4484/14/6/321
[31] Moore, D. G. et al. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nature Materials 19, 212-217 (2020). doi: 10.1038/s41563-019-0525-y
[32] Toulouse, A. et al. Alignment-free integration of apertures and nontransparent hulls into 3D-printed micro-optics. Optics Letters 43, 5283-5286 (2018). doi: 10.1364/OL.43.005283
[33] Toulouse, A. et al. 3D-printed miniature spectrometer for the visible range with a 100 × 100 μm2 footprint. Light: Advanced Manufacturing 2, 20 (2021).
[34] Tong, Q. C. et al. Fabrication of controllable form submicrometer structures on positive photoresist by one-photon absorption direct laser writing technique. Proceedings of SPIE 9885, Photonic Crystal Materials and Devices XII. Brussels, Belgium: SPIE, 2016, 988519.
[35] Gonzalez-Hernandez, D. et al. Single-Step 3D Printing of Micro-Optics with Adjustable Refractive Index by Ultrafast Laser Nanolithography. Advanced Optical Materials, 2300258 (2023).
[36] Mueller, J. B. et al. In-situ local temperature measurement during three-dimensional direct laser writing. Applied Physics Letters 103, 123107 (2013). doi: 10.1063/1.4821556
[37] Saha, S. K. et al. Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization. Journal of Micro and Nano-Manufacturing 5, 031002 (2017). doi: 10.1115/1.4036445
[38] Liu, Y. et al. Deformation Behavior of Foam Laser Targets Fabricated by Two-Photon Polymerization. Nanomaterials 8, 498 (2018). doi: 10.3390/nano8070498
[39] Giessen, H. Novel functionalities and applications of femtosecond 3D printing: gray scale lithography of complex microoptical structures. Proceedings of SPIE PC12012, Advanced Fabrication Technologies for Micro/Nano Optics and Photonics XV. San Francisco, California, United States: SPIE, 2022, PC120120O.
[40] Merkininkaitė, G. et al. Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electronic Advances 5, 210077-11 (2022). doi: 10.29026/oea.2022.210077
[41] IP-S. NanoGuide. (2023). at https://support.nanoscribe.com/hc/en-gb/articles/360001750353-IP-S.