[1] Melanoma survival rates - melanoma research alliance. at https://www.curemelanoma.org/about-melanoma/melanoma-staging/melanoma-survival-rates URL.
[2] Cancer tomorrow. at https://gco.iarc.fr/tomorrow/en/dataviz/tables?types=0&sexes=0&mode=cancer&group_populations=1&multiple_populations=0&multiple_cancers=1&cancers=16&populations=900&apc=cat_ca20v1.5_ca23v-1.5&years=2025 URL.
[3] Cancer today. at https://gco.iarc.fr/today/en/dataviz/tables?mode=cancer&cancers=16&key=total&group_populations=1&age_end=14&populations=900&cancers_h=16 URL.
[4] Five-year survival rates | SEER training. at https://training.seer.cancer.gov/melanoma/intro/survival.html URL.
[5] Naik, P. P. Cutaneous malignant melanoma: a review of early diagnosis and management. World Journal of Oncology 12, 7-19 (2021 doi: 10.14740/wjon1349
[6] Yu, W., Hu, C. & Gao, H. L. Intelligent size-changeable nanoparticles for enhanced tumor accumulation and deep penetration. ACS Applied Bio Materials 3, 5455-5462 (2020 doi: 10.1021/acsabm.0c00917
[7] Rosenkranz, A. A. et al. Malignant melanoma and melanocortin 1 receptor. Biochemistry (Moscow) 78, 1228-1237 (2013 doi: 10.1134/S0006297913110035
[8] Kameyama, K., Montague, P. M. & Hearing, V. J. Expression of melanocyte stimulating hormone receptors correlates with mammalian pigmentation, and can be modulated by interferons. Journal of Cellular Physiology 137, 35-44 (1988 doi: 10.1002/jcp.1041370105
[9] Siegrist, W. et al. Characterization of receptors for alpha-melanocyte-stimulating hormone on human melanoma cells. Cancer Research 49, 6352-6358 (1989).
[10] Miao, Y. B. et al. Evaluation of the human melanoma targeting properties of radiolabeled α-melanocyte stimulating hormone peptide analogues. Bioconjugate Chemistry 14, 1177-1184 (2003 doi: 10.1021/bc034069i
[11] Yang, H. et al. Synthesis and evaluation of a macrocyclic actinium‐225 chelator, quality control and in vivo evaluation of 225Ac‐crown‐αMSH peptide. Chemistry – A European Journal 26, 11435-11440 (2020 doi: 10.1002/chem.202002999
[12] Miao, Y. B. et al. Therapeutic efficacy of a 188Re-labeled α-melanocyte- stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. Journal of Nuclear Medicine 46, 121-129 (2005).
[13] Miao, Y. B. et al. Melanoma therapy via peptide-targeted α-radiation. Clinical Cancer Research 11, 5616-5621 (2005 doi: 10.1158/1078-0432.CCR-05-0619
[14] Lejeune, F. J. & Ghanem, G. E. Attempts to use α‐melanotropin‐containing melphalan in melanoma patientsa. Annals of the New York Academy of Sciences 680, 391-400 (1993 doi: 10.1111/j.1749-6632.1993.tb19697.x
[15] O’hare, K. et al. Polymeric drug-carriers containing doxorubicin and melanocyte-stimulating hormone: in vitro and in vivo evaluation against murine melanoma. Journal of Drug Targeting 1, 217-229 (1993 doi: 10.3109/10611869308996079
[16] Slastnikova, T. A. et al. Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery. International Journal of Nanomedicine 7, 467-482 (2012 doi: 10.2147/IJN.S28249
[17] Durymanov, M. O. et al. Subcellular trafficking and transfection efficacy of polyethylenimine–polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1. Journal of Controlled Release 163, 211-219 (2012 doi: 10.1016/j.jconrel.2012.08.027
[18] Yan, T. J. et al. Second near‐infrared plasmonic nanomaterials for photoacoustic imaging and photothermal therapy. Small 19, 2300539 (2023 doi: 10.1002/smll.202300539
[19] Yang, K. et al. Low temperature photothermal therapy: advances and perspectives. Coordination Chemistry Reviews 454, 214330 (2022 doi: 10.1016/j.ccr.2021.214330
[20] Kroemer, G. et al. Immunogenic cell stress and death. Nature Immunology 23, 487-500 (2022 doi: 10.1038/s41590-022-01132-2
[21] Peltek, O. O. et al. Fluorescence-based thermometry for precise estimation of nanoparticle laser-induced heating in cancerous cells at nanoscale. Nanophotonics 11, 4323-4335 (2022 doi: 10.1515/nanoph-2022-0314
[22] Van Rhoon, G. C. & Wust, P. Introduction: non-invasive thermometry for thermotherapy. International Journal of Hyperthermia 21, 489-495 (2005 doi: 10.1080/02656730500272963
[23] Lu, W. et al. Receptor-mediated transcytosis: a mechanism for active extravascular transport of nanoparticles in solid tumors. Journal of Controlled Release 161, 959-966 (2012 doi: 10.1016/j.jconrel.2012.05.014
[24] Zhao, Y. F. et al. Melanocortin 1 receptor targeted imaging of melanoma with gold nanocages and positron emission tomography. Molecular Imaging 17 , 153601211877582 (2018 doi: 10.1177/1536012118775827
[25] Ye, X. C. et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Letters 13, 765-771 (2013 doi: 10.1021/nl304478h
[26] Wang, Z. L. et al. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surface Science 440, L809-L814 (1999 doi: 10.1016/S0039-6028(99)00865-1
[27] Gong, X. W. et al. Discarded free peg-based assay for obtaining the modification extent of pegylated proteins. Talanta 71, 381-384 (2007 doi: 10.1016/j.talanta.2006.04.010
[28] Peltek, O. O. et al. Development of nanocarrier-based radionuclide and photothermal therapy in combination with chemotherapy in melanoma cancer treatment. ACS Applied Materials & Interfaces 15, 13460-13471 (2023 doi: 10.1021/acsami.2c20619
[29] Baffou, G. Thermoplasmonics: Heating Metal Nanoparticles Using Light. (Cambridge: Cambridge University Press, 2017 doi: 10.1017/9781108289801
[30] Yan, C. L. et al. Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. Materials Science and Engineering: C 87, 120-127 (2018 doi: 10.1016/j.msec.2018.02.021
[31] Lebepe, T. C. & Oluwafemi, O. S. Photothermal conversion profiling of large-scaled synthesized gold nanorods using binary surfactant with hydroquinone as a reducing agent. Nanomaterials 12, 1723 (2022 doi: 10.3390/nano12101723
[32] Liu, Y. et al. NIR-II-activated yolk–shell nanostructures as an intelligent platform for parkinsonian therapy. ACS Applied Bio Materials 3 , 6876-6887 (2020 doi: 10.1021/acsabm.0c00794
[33] Zhang, Y. F. & Lu, M. Numerical simulation of thermal therapy for melanoma in mice. Bioengineering 11, 694 (2024 doi: 10.3390/bioengineering11070694
[34] Baffou, G. & Rigneault, H. Femtosecond-pulsed optical heating of gold nanoparticles. Physical Review B 84, 035415 (2011 doi: 10.1103/PhysRevB.84.035415
[35] Zograf, G. P. et al. All-dielectric thermonanophotonics. Advances in Optics and Photonics 13, 643-702 (2021 doi: 10.1364/AOP.426047
[36] Carpene, E. Ultrafast laser irradiation of metals: beyond the two-temperature model. Physical Review B 74, 024301 (2006 doi: 10.1103/PhysRevB.74.024301
[37] Hsieh, S. S., Leu, H. Y. & Liu, H. H. Spray cooling characteristics of nanofluids for electronic power devices. Nanoscale Research Letters 10, 139 (2015 doi: 10.1186/s11671-015-0793-7
[38] Zograf, G. P. et al. Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating. Nano Letters 17, 2945-2952 (2017 doi: 10.1021/acs.nanolett.7b00183
[39] Cui, X. M. et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chemical Reviews 123, 6891-6952 (2023 doi: 10.1021/acs.chemrev.3c00159
[40] Dykman, L. A. & Khlebtsov, N. G. Uptake of engineered gold nanoparticles into mammalian cells. Chemical Reviews 114, 1258-1288 (2014 doi: 10.1021/cr300441a
[41] Baffou, G., Quidant, R. & Girard, C. Thermoplasmonics modeling: a green’s function approach. Physical Review B 82, 165424 (2010 doi: 10.1103/PhysRevB.82.165424
[42] Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478-6488 (2013 doi: 10.1021/nn401924n
[43] Szardenings, M. et al. New highly specific agonistic peptides for human melanocortin MC1 receptor☆. Peptides 21, 239-243 (2000 doi: 10.1016/S0196-9781(99)00207-7
[44] Bartczak, D. & Kanaras, A. G. Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27, 10119-10123 (2011 doi: 10.1021/la2022177
[45] Ellerbrock, R. H. & Gerke, H. H. FTIR spectral band shifts explained by OM–cation interactions. Journal of Plant Nutrition and Soil Science 184 , 388-397 (2021 doi: 10.1002/jpln.202100056
[46] Aryal, S. et al. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 63, 160-163 (2006 doi: 10.1016/j.saa.2005.04.048
[47] Udenfriend, S. et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178, 871-872 (1972 doi: 10.1126/science.178.4063.871
[48] Ain Azman, N. et al. Polyelectrolyte stiffness on gold nanorods mediates cell membrane damage. Nanoscale 12, 14021-14036 (2020 doi: 10.1039/D0NR03288C
[49] Oh, T. I. et al. Plumbagin suppresses α-MSH-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity. International Journal of Molecular Sciences 18, 320 (2017 doi: 10.3390/ijms18020320
[50] Attia, A. B. E. et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16, 100144 (2019 doi: 10.1016/j.pacs.2019.100144
[51] Zhang, H. F. et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Applied Physics Letters 90, 053901 (2007 doi: 10.1063/1.2435697
[52] Wang, X. D. et al. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. Journal of Biomedical Optics 11, 024015 (2006 doi: 10.1117/1.2192804
[53] Repenko, T. et al. Strong photoacoustic signal enhancement by coating gold nanoparticles with melanin for biomedical imaging. Advanced Functional Materials 28, 1705607 (2018 doi: 10.1002/adfm.201705607
[54] Cho, S. W. et al. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. Photoacoustics 29, 100456 (2023 doi: 10.1016/j.pacs.2023.100456
[55] Durymanov, M. O. et al. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue. Biomaterials 34, 10209-10216 (2013 doi: 10.1016/j.biomaterials.2013.08.076
[56] Durymanov, M. O. et al. Application of vasoactive and matrix-modifying drugs can improve polyplex delivery to tumors upon intravenous administration. Journal of Controlled Release 232, 20-28 (2016 doi: 10.1016/j.jconrel.2016.04.011
[57] Bailly, A. L. et al. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Scientific Reports 9 , 12890 (2019 doi: 10.1038/s41598-019-48748-3
[58] Ali, M. R. K. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proceedings of the National Academy of Sciences of the United States of America 114, E3110-E3118 (2017 doi: 10.1073/pnas.1619302114
[59] Yoon, J. et al. Cytosolic irradiation of femtosecond laser induces mitochondria-dependent apoptosis-like cell death via intrinsic reactive oxygen cascades. Scientific Reports 5, 8231 (2015 doi: 10.1038/srep08231
[60] Tirlapur, U. K. et al. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Experimental Cell Research 263, 88-97 (2001 doi: 10.1006/excr.2000.5082
[61] Fang-Yen, C. et al. Laser microsurgery in Caenorhabditis elegans. in Methods in Cell Biology (eds Rothman, J. H. & Singson, A. ) Ch. 6 (New York: Academic Press, 2012), 177-206 doi: 10.1016/B978-0-12-394620-1.00006-0
[62] Vogel, A. et al. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers in Surgery and Medicine 15, 32-43 (1994 doi: 10.1002/lsm.1900150106
[63] Calvarese, M. et al. Recent developments and advances of femtosecond laser ablation: towards image-guided microsurgery probes. TrAC Trends in Analytical Chemistry 167, 117250 (2023 doi: 10.1016/j.trac.2023.117250
[64] Fernandes, J. & Kang, S. M. Thermal dynamics of gold nanoshell dimers under femtosecond laser pulse irradiation: a numerical approach. International Journal for Numerical Methods in Biomedical Engineering 39, e3773 (2023 doi: 10.1002/cnm.3773
[65] Fernandes, J. & Kang, S. M. Thermal-induced convective flow around core–shell gold nanodimers under continuous-wave laser irradiation: implications for nanofluidics. ACS Applied Nano Materials 6, 18016-18028 (2023 doi: 10.1021/acsanm.3c03317
[66] Schomaker, M. et al. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. Journal of Nanobiotechnology 13, 10 (2015 doi: 10.1186/s12951-014-0057-1
[67] Shen, Y. T. et al. Organelle-targeting gold nanorods for macromolecular profiling of subcellular organelles and enhanced cancer cell killing. ACS Applied Materials & Interfaces 10, 7910-7918 (2018 doi: 10.1021/acsami.8b01320