[1] |
Melanoma survival rates - melanoma research alliance. at https://www.curemelanoma.org/about-melanoma/melanoma-staging/melanoma-survival-rates URL. |
[2] |
Cancer tomorrow. at https://gco.iarc.fr/tomorrow/en/dataviz/tables?types=0&sexes=0&mode=cancer&group_populations=1&multiple_populations=0&multiple_cancers=1&cancers=16&populations=900&apc=cat_ca20v1.5_ca23v-1.5&years=2025 URL. |
[3] |
Cancer today. at https://gco.iarc.fr/today/en/dataviz/tables?mode=cancer&cancers=16&key=total&group_populations=1&age_end=14&populations=900&cancers_h=16 URL. |
[4] |
Five-year survival rates | SEER training. at https://training.seer.cancer.gov/melanoma/intro/survival.html URL. |
[5] |
Naik, P. P. Cutaneous malignant melanoma: a review of early diagnosis and management. World Journal of Oncology 12, 7-19 (2021 doi: 10.14740/wjon1349 |
[6] |
Yu, W., Hu, C. & Gao, H. L. Intelligent size-changeable nanoparticles for enhanced tumor accumulation and deep penetration. ACS Applied Bio Materials 3, 5455-5462 (2020 doi: 10.1021/acsabm.0c00917 |
[7] |
Rosenkranz, A. A. et al. Malignant melanoma and melanocortin 1 receptor. Biochemistry (Moscow) 78, 1228-1237 (2013 doi: 10.1134/S0006297913110035 |
[8] |
Kameyama, K., Montague, P. M. & Hearing, V. J. Expression of melanocyte stimulating hormone receptors correlates with mammalian pigmentation, and can be modulated by interferons. Journal of Cellular Physiology 137, 35-44 (1988 doi: 10.1002/jcp.1041370105 |
[9] |
Siegrist, W. et al. Characterization of receptors for alpha-melanocyte-stimulating hormone on human melanoma cells. Cancer Research 49, 6352-6358 (1989). |
[10] |
Miao, Y. B. et al. Evaluation of the human melanoma targeting properties of radiolabeled α-melanocyte stimulating hormone peptide analogues. Bioconjugate Chemistry 14, 1177-1184 (2003 doi: 10.1021/bc034069i |
[11] |
Yang, H. et al. Synthesis and evaluation of a macrocyclic actinium‐225 chelator, quality control and in vivo evaluation of 225Ac‐crown‐αMSH peptide. Chemistry – A European Journal 26, 11435-11440 (2020 doi: 10.1002/chem.202002999 |
[12] |
Miao, Y. B. et al. Therapeutic efficacy of a 188Re-labeled α-melanocyte- stimulating hormone peptide analog in murine and human melanoma-bearing mouse models. Journal of Nuclear Medicine 46, 121-129 (2005). |
[13] |
Miao, Y. B. et al. Melanoma therapy via peptide-targeted α-radiation. Clinical Cancer Research 11, 5616-5621 (2005 doi: 10.1158/1078-0432.CCR-05-0619 |
[14] |
Lejeune, F. J. & Ghanem, G. E. Attempts to use α‐melanotropin‐containing melphalan in melanoma patientsa. Annals of the New York Academy of Sciences 680, 391-400 (1993 doi: 10.1111/j.1749-6632.1993.tb19697.x |
[15] |
O’hare, K. et al. Polymeric drug-carriers containing doxorubicin and melanocyte-stimulating hormone: in vitro and in vivo evaluation against murine melanoma. Journal of Drug Targeting 1, 217-229 (1993 doi: 10.3109/10611869308996079 |
[16] |
Slastnikova, T. A. et al. Modular nanotransporters: a multipurpose in vivo working platform for targeted drug delivery. International Journal of Nanomedicine 7, 467-482 (2012 doi: 10.2147/IJN.S28249 |
[17] |
Durymanov, M. O. et al. Subcellular trafficking and transfection efficacy of polyethylenimine–polyethylene glycol polyplex nanoparticles with a ligand to melanocortin receptor-1. Journal of Controlled Release 163, 211-219 (2012 doi: 10.1016/j.jconrel.2012.08.027 |
[18] |
Yan, T. J. et al. Second near‐infrared plasmonic nanomaterials for photoacoustic imaging and photothermal therapy. Small 19, 2300539 (2023 doi: 10.1002/smll.202300539 |
[19] |
Yang, K. et al. Low temperature photothermal therapy: advances and perspectives. Coordination Chemistry Reviews 454, 214330 (2022 doi: 10.1016/j.ccr.2021.214330 |
[20] |
Kroemer, G. et al. Immunogenic cell stress and death. Nature Immunology 23, 487-500 (2022 doi: 10.1038/s41590-022-01132-2 |
[21] |
Peltek, O. O. et al. Fluorescence-based thermometry for precise estimation of nanoparticle laser-induced heating in cancerous cells at nanoscale. Nanophotonics 11, 4323-4335 (2022 doi: 10.1515/nanoph-2022-0314 |
[22] |
Van Rhoon, G. C. & Wust, P. Introduction: non-invasive thermometry for thermotherapy. International Journal of Hyperthermia 21, 489-495 (2005 doi: 10.1080/02656730500272963 |
[23] |
Lu, W. et al. Receptor-mediated transcytosis: a mechanism for active extravascular transport of nanoparticles in solid tumors. Journal of Controlled Release 161, 959-966 (2012 doi: 10.1016/j.jconrel.2012.05.014 |
[24] |
Zhao, Y. F. et al. Melanocortin 1 receptor targeted imaging of melanoma with gold nanocages and positron emission tomography. Molecular Imaging 17 , 153601211877582 (2018 doi: 10.1177/1536012118775827 |
[25] |
Ye, X. C. et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano Letters 13, 765-771 (2013 doi: 10.1021/nl304478h |
[26] |
Wang, Z. L. et al. Crystallographic facets and shapes of gold nanorods of different aspect ratios. Surface Science 440, L809-L814 (1999 doi: 10.1016/S0039-6028(99)00865-1 |
[27] |
Gong, X. W. et al. Discarded free peg-based assay for obtaining the modification extent of pegylated proteins. Talanta 71, 381-384 (2007 doi: 10.1016/j.talanta.2006.04.010 |
[28] |
Peltek, O. O. et al. Development of nanocarrier-based radionuclide and photothermal therapy in combination with chemotherapy in melanoma cancer treatment. ACS Applied Materials & Interfaces 15, 13460-13471 (2023 doi: 10.1021/acsami.2c20619 |
[29] |
Baffou, G. Thermoplasmonics: Heating Metal Nanoparticles Using Light. (Cambridge: Cambridge University Press, 2017 doi: 10.1017/9781108289801 |
[30] |
Yan, C. L. et al. Concentration effect on large scale synthesis of high quality small gold nanorods and their potential role in cancer theranostics. Materials Science and Engineering: C 87, 120-127 (2018 doi: 10.1016/j.msec.2018.02.021 |
[31] |
Lebepe, T. C. & Oluwafemi, O. S. Photothermal conversion profiling of large-scaled synthesized gold nanorods using binary surfactant with hydroquinone as a reducing agent. Nanomaterials 12, 1723 (2022 doi: 10.3390/nano12101723 |
[32] |
Liu, Y. et al. NIR-II-activated yolk–shell nanostructures as an intelligent platform for parkinsonian therapy. ACS Applied Bio Materials 3 , 6876-6887 (2020 doi: 10.1021/acsabm.0c00794 |
[33] |
Zhang, Y. F. & Lu, M. Numerical simulation of thermal therapy for melanoma in mice. Bioengineering 11, 694 (2024 doi: 10.3390/bioengineering11070694 |
[34] |
Baffou, G. & Rigneault, H. Femtosecond-pulsed optical heating of gold nanoparticles. Physical Review B 84, 035415 (2011 doi: 10.1103/PhysRevB.84.035415 |
[35] |
Zograf, G. P. et al. All-dielectric thermonanophotonics. Advances in Optics and Photonics 13, 643-702 (2021 doi: 10.1364/AOP.426047 |
[36] |
Carpene, E. Ultrafast laser irradiation of metals: beyond the two-temperature model. Physical Review B 74, 024301 (2006 doi: 10.1103/PhysRevB.74.024301 |
[37] |
Hsieh, S. S., Leu, H. Y. & Liu, H. H. Spray cooling characteristics of nanofluids for electronic power devices. Nanoscale Research Letters 10, 139 (2015 doi: 10.1186/s11671-015-0793-7 |
[38] |
Zograf, G. P. et al. Resonant nonplasmonic nanoparticles for efficient temperature-feedback optical heating. Nano Letters 17, 2945-2952 (2017 doi: 10.1021/acs.nanolett.7b00183 |
[39] |
Cui, X. M. et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chemical Reviews 123, 6891-6952 (2023 doi: 10.1021/acs.chemrev.3c00159 |
[40] |
Dykman, L. A. & Khlebtsov, N. G. Uptake of engineered gold nanoparticles into mammalian cells. Chemical Reviews 114, 1258-1288 (2014 doi: 10.1021/cr300441a |
[41] |
Baffou, G., Quidant, R. & Girard, C. Thermoplasmonics modeling: a green’s function approach. Physical Review B 82, 165424 (2010 doi: 10.1103/PhysRevB.82.165424 |
[42] |
Baffou, G. et al. Photoinduced heating of nanoparticle arrays. ACS Nano 7, 6478-6488 (2013 doi: 10.1021/nn401924n |
[43] |
Szardenings, M. et al. New highly specific agonistic peptides for human melanocortin MC1 receptor☆. Peptides 21, 239-243 (2000 doi: 10.1016/S0196-9781(99)00207-7 |
[44] |
Bartczak, D. & Kanaras, A. G. Preparation of peptide-functionalized gold nanoparticles using one pot EDC/Sulfo-NHS coupling. Langmuir 27, 10119-10123 (2011 doi: 10.1021/la2022177 |
[45] |
Ellerbrock, R. H. & Gerke, H. H. FTIR spectral band shifts explained by OM–cation interactions. Journal of Plant Nutrition and Soil Science 184 , 388-397 (2021 doi: 10.1002/jpln.202100056 |
[46] |
Aryal, S. et al. Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 63, 160-163 (2006 doi: 10.1016/j.saa.2005.04.048 |
[47] |
Udenfriend, S. et al. Fluorescamine: a reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178, 871-872 (1972 doi: 10.1126/science.178.4063.871 |
[48] |
Ain Azman, N. et al. Polyelectrolyte stiffness on gold nanorods mediates cell membrane damage. Nanoscale 12, 14021-14036 (2020 doi: 10.1039/D0NR03288C |
[49] |
Oh, T. I. et al. Plumbagin suppresses α-MSH-induced melanogenesis in B16F10 mouse melanoma cells by inhibiting tyrosinase activity. International Journal of Molecular Sciences 18, 320 (2017 doi: 10.3390/ijms18020320 |
[50] |
Attia, A. B. E. et al. A review of clinical photoacoustic imaging: current and future trends. Photoacoustics 16, 100144 (2019 doi: 10.1016/j.pacs.2019.100144 |
[51] |
Zhang, H. F. et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Applied Physics Letters 90, 053901 (2007 doi: 10.1063/1.2435697 |
[52] |
Wang, X. D. et al. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. Journal of Biomedical Optics 11, 024015 (2006 doi: 10.1117/1.2192804 |
[53] |
Repenko, T. et al. Strong photoacoustic signal enhancement by coating gold nanoparticles with melanin for biomedical imaging. Advanced Functional Materials 28, 1705607 (2018 doi: 10.1002/adfm.201705607 |
[54] |
Cho, S. W. et al. Efficient label-free in vivo photoacoustic imaging of melanoma cells using a condensed NIR-I spectral window. Photoacoustics 29, 100456 (2023 doi: 10.1016/j.pacs.2023.100456 |
[55] |
Durymanov, M. O. et al. Microdistribution of MC1R-targeted polyplexes in murine melanoma tumor tissue. Biomaterials 34, 10209-10216 (2013 doi: 10.1016/j.biomaterials.2013.08.076 |
[56] |
Durymanov, M. O. et al. Application of vasoactive and matrix-modifying drugs can improve polyplex delivery to tumors upon intravenous administration. Journal of Controlled Release 232, 20-28 (2016 doi: 10.1016/j.jconrel.2016.04.011 |
[57] |
Bailly, A. L. et al. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Scientific Reports 9 , 12890 (2019 doi: 10.1038/s41598-019-48748-3 |
[58] |
Ali, M. R. K. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proceedings of the National Academy of Sciences of the United States of America 114, E3110-E3118 (2017 doi: 10.1073/pnas.1619302114 |
[59] |
Yoon, J. et al. Cytosolic irradiation of femtosecond laser induces mitochondria-dependent apoptosis-like cell death via intrinsic reactive oxygen cascades. Scientific Reports 5, 8231 (2015 doi: 10.1038/srep08231 |
[60] |
Tirlapur, U. K. et al. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death. Experimental Cell Research 263, 88-97 (2001 doi: 10.1006/excr.2000.5082 |
[61] |
Fang-Yen, C. et al. Laser microsurgery in Caenorhabditis elegans. in Methods in Cell Biology (eds Rothman, J. H. & Singson, A. ) Ch. 6 (New York: Academic Press, 2012), 177-206 doi: 10.1016/B978-0-12-394620-1.00006-0 |
[62] |
Vogel, A. et al. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers in Surgery and Medicine 15, 32-43 (1994 doi: 10.1002/lsm.1900150106 |
[63] |
Calvarese, M. et al. Recent developments and advances of femtosecond laser ablation: towards image-guided microsurgery probes. TrAC Trends in Analytical Chemistry 167, 117250 (2023 doi: 10.1016/j.trac.2023.117250 |
[64] |
Fernandes, J. & Kang, S. M. Thermal dynamics of gold nanoshell dimers under femtosecond laser pulse irradiation: a numerical approach. International Journal for Numerical Methods in Biomedical Engineering 39, e3773 (2023 doi: 10.1002/cnm.3773 |
[65] |
Fernandes, J. & Kang, S. M. Thermal-induced convective flow around core–shell gold nanodimers under continuous-wave laser irradiation: implications for nanofluidics. ACS Applied Nano Materials 6, 18016-18028 (2023 doi: 10.1021/acsanm.3c03317 |
[66] |
Schomaker, M. et al. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. Journal of Nanobiotechnology 13, 10 (2015 doi: 10.1186/s12951-014-0057-1 |
[67] |
Shen, Y. T. et al. Organelle-targeting gold nanorods for macromolecular profiling of subcellular organelles and enhanced cancer cell killing. ACS Applied Materials & Interfaces 10, 7910-7918 (2018 doi: 10.1021/acsami.8b01320 |