[1] |
Basov, D. N., Fogler, M. M. & de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016). doi: 10.1126/science.aag1992 |
[2] |
Caldwell, J. D. et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5, 5221 (2014). doi: 10.1038/ncomms6221 |
[3] |
Yoxall, E. et al. Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity. Nat. Photon 9, 674–678 (2015). doi: 10.1038/nphoton.2015.166 |
[4] |
Li, P. et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat. Commun. 6, 7507 (2015). doi: 10.1038/ncomms8507 |
[5] |
Dai, S. et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014). doi: 10.1126/science.1246833 |
[6] |
Kumar, A., Low, T., Fung, K. H., Avouris, P. & Fang, N. X. Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett. 15, 3172–3180 (2015). doi: 10.1021/acs.nanolett.5b01191 |
[7] |
Shi, Z. et al. Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride. ACS Photonics 2, 790–796 (2015). doi: 10.1021/acsphotonics.5b00007 |
[8] |
Ambrosio, A. et al. Mechanical detection and imaging of hyperbolic phonon polaritons in hexagonal boron nitride. ACS Nano 11, 8741–8746 (2017). doi: 10.1021/acsnano.7b02323 |
[9] |
Gilburd, L. et al. Hexagonal boron nitride self-launches hyperbolic phonon polaritons. J. Phys. Chem. Lett. 8, 2158–2162 (2017). doi: 10.1021/acs.jpclett.7b00748 |
[10] |
Xu, X. G., Gilburd, L., Bando, Y., Golberg, D. & Walker, G. C. Defects and deformation of boron nitride nanotubes studied by joint nanoscale mechanical and infrared near-field microscopy. J. Phys. Chem. C 120, 1945–1951 (2016). doi: 10.1021/acs.jpcc.5b10670 |
[11] |
Gilburd, L., Xu, X. G., Bando, Y., Golberg, D. & Walker, G. C. Near-field infrared pump–probe imaging of surface phonon coupling in boron nitride nanotubes. J. Phys. Chem. Lett. 7, 289–294 (2016). doi: 10.1021/acs.jpclett.5b02438 |
[12] |
Wintz, D. et al. Guided modes of anisotropic van der waals materials investigated by near-field scanning optical microscopy. ACS Photonics 5, 1196–1201 (2018). doi: 10.1021/acsphotonics.7b01518 |
[13] |
Giles, A. J. et al. Imaging of anomalous internal reflections of hyperbolic phonon-polaritons in hexagonal boron nitride. Nano Lett. 16, 3858–3865 (2016). doi: 10.1021/acs.nanolett.6b01341 |
[14] |
Woessner, A. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015). doi: 10.1038/nmat4169 |
[15] |
Rajapaksa, I., Uenal, K. & Wickramasinghe, H. K. Image force microscopy of molecular resonance: a microscope principle. Appl. Phys. Lett. 97, 073121 (2010). doi: 10.1063/1.3480608 |
[16] |
Tumkur, T. U. et al. Photoinduced force mapping of plasmonic nanostructures. Nano Lett. 16, 7942–7949 (2016). doi: 10.1021/acs.nanolett.6b04245 |
[17] |
Nowak, D. et al. Nanoscale chemical imaging by photoinduced force microscopy. Sci. Adv. 2, e1501571 (2016). doi: 10.1126/sciadv.1501571 |
[18] |
Ambrosio, A., Devlin, R. C., Capasso, F. & Wilson, W. L. Observation of nanoscale refractive index contrast via photoinduced force microscopy. ACS Photonics 4, 846–851 (2017). doi: 10.1021/acsphotonics.6b00911 |
[19] |
Duan, J. et al. Launching phonon polaritons by natural boron nitride wrinkles with modifiable dispersion by dielectric environments. Adv. Mater. 29, 1702494 (2017). doi: 10.1002/adma.201702494 |
[20] |
Jahng, J., Kim, B., Lee, E. S. & Potma, E. O. Quantitative analysis of sideband coupling in photoinduced force microscopy. Phys. Rev. B 94, 195407 (2016). doi: 10.1103/PhysRevB.94.195407 |
[21] |
Yamanishi, J., Naitoh, Y., Li, Y. & Sugawara, Y. Heterodyne technique in photoinduced force microscopy with photothermal effect. Appl. Phys. Lett. 110, 123102 (2017). doi: 10.1063/1.4978755 |
[22] |
Wang, L. et al. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy. Sci. Adv. 3, e1700255 (2017). doi: 10.1126/sciadv.1700255 |
[23] |
López, J. J. et al. Large photothermal effect in sub-40nm h-BN nanostructures patterned via high-resolution ion beam. Small 14, 1800072 (2018). doi: 10.1002/smll.201800072 |
[24] |
Brown, L. V., et al. Nanoscale mapping and spectroscopy of non-radiative hyperbolic modes in hexagonal boron nitride nanostructures. arXiv: 1710.10285, 2017. |
[25] |
Yang, H. U. & Raschke, M. B. Resonant optical gradient force interaction for nano-imaging and-spectroscopy. New J. Phys. 18, 053042 (2016). doi: 10.1088/1367-2630/18/5/053042 |
[26] |
Almajhadi, M. & Wickramasinghe, H. K. Contrast and imaging performance in photo induced force microscopy. Opt. Express 25, 26923–26938 (2017). doi: 10.1364/OE.25.026923 |
[27] |
Huber, A., Ocelic, N., Kazantsev, D. & Hillenbrand, R. Near-field imaging of mid-infrared surface phonon polariton propagation. Appl. Phys. Lett. 87, 081103 (2005). doi: 10.1063/1.2032595 |
[28] |
Knoll, B. & Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 182, 321–328 (2000). doi: 10.1016/S0030-4018(00)00826-9 |
[29] |
Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006). doi: 10.1063/1.2348781 |
[30] |
Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007). doi: 10.1364/OE.15.008550 |
[31] |
De Angelis, F., Zaccaria, R. P. & Di Fabrizio, E. Mapping the local dielectric response at the nanoscale by means of plasmonic force spectroscopy. Opt. Express 20, 29626–29633 (2012). doi: 10.1364/OE.20.029626 |
[32] |
Govyadinov, A. A. et al. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 8, 6911–6921 (2014). doi: 10.1021/nn5016314 |
[33] |
Pollard, B., Maia, F. C., Raschke, M. B. & Freitas, R. O. Infrared vibrational nanospectroscopy by self-referenced interferometry. Nano Lett. 16, 55–61 (2016). doi: 10.1021/acs.nanolett.5b02730 |
[34] |
Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017). doi: 10.1021/acs.nanolett.7b01587 |
[35] |
Giles, A. J. et al. Ultralow-loss polaritons in isotopically pure boron nitride. Nat. Mater. 17, 134–139 (2018). doi: 10.1038/nmat5047 |