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Nanoprinted high-neuron-density optical linear
perceptrons performing near-infrared inference on
a CMOS chip
Elena Goi1,2, Xi Chen1, Qiming Zhang1, Benjamin P. Cumming2, Steffen Schoenhardt1, Haitao Luan1 and Min Gu 1,2

Abstract
Optical machine learning has emerged as an important research area that, by leveraging the advantages inherent to
optical signals, such as parallelism and high speed, paves the way for a future where optical hardware can process data
at the speed of light. In this work, we present such optical devices for data processing in the form of single-layer
nanoscale holographic perceptrons trained to perform optical inference tasks. We experimentally show the
functionality of these passive optical devices in the example of decryptors trained to perform optical inference of
single or whole classes of keys through symmetric and asymmetric decryption. The decryptors, designed for operation
in the near-infrared region, are nanoprinted on complementary metal-oxide–semiconductor chips by galvo-dithered
two-photon nanolithography with axial nanostepping of 10 nm1,2, achieving a neuron density of >500 million neurons
per square centimetre. This power-efficient commixture of machine learning and on-chip integration may have a
transformative impact on optical decryption3, sensing4, medical diagnostics5 and computing6,7.

Introduction
Communication technology is a cornerstone of modern

society, making the secure exchange of information more
important than ever. This demand to preserve the privacy of
information, systems and networks8,9 has led to the devel-
opment of rigid authentication schemes, which require a
specific decryption key, and flexible authentication schemes
using a multitude of keys. While in large-scale commu-
nication systems, data are transferred through optical sig-
nals, decryption is mostly performed in the electronic
domain, requiring costly conversion of the information.
Executing cryptography directly in the optical domain offers
several advantages inherent to optical signals, such as pro-
pagation at the speed of light, direct information processing
in two-dimensional space and parallelism. With this

motivation, considerable effort has been devoted to optical
security schemes through the use of phase masks10–13,
which can be used as physical encryption and decryption
keys. These phase masks are usually designed by optimi-
sation algorithms, such as the Gerchberg–Saxton itera-
tion10–12 or wavefront matching13. The resulting optically
enabled encryption/decryption systems require multiple
passes through different sets of bulky phase masks and
lenses to encrypt and retrieve a message. Moreover, with
their rigid constraints on inputs and keys, phase mask-based
systems fail to meet the requirements for flexible authen-
tication schemes, as used in biometric security.
By employing machine learning methods in optical cryp-

tographic protocols, the limitations faced in traditional bulky
optical security schemes10–13 can be overcome, paving the
way for a new generation of compact optically enabled
machine learning decryption systems for enhanced authen-
tication solutions. Through computer-based machine
learning training, the decryptors learn the ability to decode a
multitude of messages and map them into a desired output,
thus acquiring the capability of selectively recognising one
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specific decryption key among an infinite number of input
keys for symmetric decryption or identifying the class to
which a specific input key belongs for asymmetric decryp-
tion (Fig. 1a). Once computer-based training is completed,
the decryptors can be physically fabricated as single-layer
holographic perceptrons (Fig. 1b) able to recognise several
input keys through all-optical machine learning inference
and display the corresponding decrypted message or a
notification of rejection (Table 1).
The single-layer perceptrons optically implement

matrix multiplications14. Implementation of matrix mul-
tiplication in the optical domain has been a topic of
research for decades15, and has been shown in free space
through the use of beam splitters or Mach–Zehnder

interferometers16,17, as well as in integrated photonic
circuits18,19 through the same mechanisms, for applica-
tion in optical signal processing20 and reconfigurable
optical neural networks18. Recently, diffractive neural
network architectures have been proposed21, in which
these matrix multiplications are performed by diffractive
elements. This marked the beginning of optical data
processing through diffractive neural network inference,
although the fabrication methods applied are only suitable
for devices operating with a low neuron density. To utilise
the full potential of diffractive machine learning networks
at near-infrared (NIR) telecommunication wavelengths, it
is essential to develop fabrication protocols that enable
much more compact designs with optimised neuron
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Fig. 1 All-optical machine learning decryptor for integration on CMOS. a Through computer machine learning training, the optical machine
learning decryptor (MLD) acquires the capabilities of identifying a single decryption key (symmetric decryption, top) or entire classes of decryption
keys (asymmetric decryption, bottom), and decoding a multitude of messages using a single decryptor element. b The decryption system can be
considered a diffractive neural network for optical inference. Each layer of the network consists of N × N artificial neurons, secondary sources of waves
(details in Supplementary Methods). c Schematic of an MLD integrated with a CMOS chip. The nanoscale MLD is physically 3D printed by GD-TPN (d),
a nanofabrication method that gives precise control over the MLD neuron dimensions in the lateral and axial directions (e), achieving axial
nanostepping of 10 nm
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densities (Fig. S1). Nanolithographic methods22–27 are an
excellent candidate to fulfil this design requirement, as
they can—unlike PolyJet 3D printing—precisely realise
optical elements with nanometre feature sizes. Among the
nanolithographic methods, galvo-dithered two-photon
nanolithography (GD-TPN)8 stands out as the only
method that allows direct fabrication of three-
dimensional (3D), free-form structures in a single fabri-
cation step with lateral and azimuthal resolution sufficient
for devices, with applications in the NIR and visible
wavelength regimes. In addition to the high resolution
and design freedom, GD-TPN provides the flexibility to
print on arbitrary substrates without concern for charged
particle irradiation of off-the-shelf optoelectronic devices,
such as complementary metal-oxide–semiconductor
(CMOS) imaging sensors—fast, energy efficient and low-
cost microelectronic circuits widely used in modern
consumer products. The integration of optical machine
learning decryption systems with CMOS imaging can
enable unpowered optical decryption at the speed of light,
with the advantage that the decrypted images can be
directly transmitted, displayed and stored over standard
electronic communication channels.
In this work, we present a novel concept for compact

optical decryptors that can be integrated on common
CMOS chips (Fig. 1c–e). Using computer machine learning
based on error back-propagation methods, single-layer
holographic perceptrons are trained to perform critical
decryption of single or whole classes of images. By nano-
printing the machine learning decryptors (MLDs), which
are designed for operation in the NIR wavelength region,
with GD-TPN, we achieve a neuron density of over 500
million neurons per square centimetre, while controlling
the neuron height with a precision down to 10 nm.
The ability of the MLDs to execute the optical inference

tasks and perform unpowered decryption of several mes-
sages at the speed of light with a working distance as small
as 62.8 μm—an advantage for on-chip integration—is
experimentally shown. By printing the MLDs directly on a
CMOS chip, we achieve compact and highly integrated
devices, which not only outperform current optical

decryption methods, but also show the potential for appli-
cation of full optical inference devices in a wide range of
fields from computer vision to medical diagnostics.

Results
Design, training and optimisation
The MLD presented in this article is a single diffractive

element capable of scattering and directionally focusing
each of a multitude of images given as input and of
mapping them into a specific output. Once printed, the
MLD can optically perform the inference tasks of a single-
layer perceptron, mapping a variety of images on a sensor,
effectively realising the functionalities of decryption.

Computer-based machine learning training
The compact decryption system can be considered a dif-

fractive neural network21,28 working in transmission mode.
We modelled the MLD system on a computer to perform
the training. In our model, the neural network is composed
of three layers (input, MLD and output), each consisting of
N ×N resolvable pixels that act as artificial neurons, which
receive, modulate and transmit a light field (Fig. 1b). The
neurons of each layer are linked to the neurons of the
neighbouring layers through Rayleigh–Sommerfeld29 dif-
fraction. While the neurons of the input and output layers
are unbiased (i.e., uniform), each neuron of the diffractive
layer adds a bias in the form of a phase delay to the trans-
mitted signal. A cross-entropy loss function is defined to
evaluate the performance of the MLD with respect to the
desired target, and a machine learning algorithm iteratively
optimises the phase delay of each neuron in the diffractive
layer to minimise the loss function (Fig. S2). The ‘Methods’
and Supplementary Materials sections contain the details of
this TensorFlow-based design and training processes.

Compact multilayer training
The MLD perceptron30 is a basic neural network

building block that is shallow and can only learn linearly
separable functions. In a system composed of multiple
diffractive layers with a sufficient physical separation
between them, the artificial neurons of neighbouring

Table 1 Abbreviations.

MLD Machine learning decryptor MLD-T MLD trained to recognise the correct key and to visually communicate the

acceptance with a tick

CMLP Compact multilayer perceptron MLD-B MLD trained to act as a secure display, showing the image of a butterfly

9-MLD MLD able to decrypt nine classes of

handwritten letters

MLD-TIPS MLD-T optimised for IPS photoresist

3-MLD MLD able to decrypt three classes of

handwritten letters

MLD-BIPS MLD-B optimised for IPS photoresist

List of acronyms and abbreviations used in the text
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specific decryption key among an infinite number of input
keys for symmetric decryption or identifying the class to
which a specific input key belongs for asymmetric decryp-
tion (Fig. 1a). Once computer-based training is completed,
the decryptors can be physically fabricated as single-layer
holographic perceptrons (Fig. 1b) able to recognise several
input keys through all-optical machine learning inference
and display the corresponding decrypted message or a
notification of rejection (Table 1).
The single-layer perceptrons optically implement

matrix multiplications14. Implementation of matrix mul-
tiplication in the optical domain has been a topic of
research for decades15, and has been shown in free space
through the use of beam splitters or Mach–Zehnder

interferometers16,17, as well as in integrated photonic
circuits18,19 through the same mechanisms, for applica-
tion in optical signal processing20 and reconfigurable
optical neural networks18. Recently, diffractive neural
network architectures have been proposed21, in which
these matrix multiplications are performed by diffractive
elements. This marked the beginning of optical data
processing through diffractive neural network inference,
although the fabrication methods applied are only suitable
for devices operating with a low neuron density. To utilise
the full potential of diffractive machine learning networks
at near-infrared (NIR) telecommunication wavelengths, it
is essential to develop fabrication protocols that enable
much more compact designs with optimised neuron
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Fig. 1 All-optical machine learning decryptor for integration on CMOS. a Through computer machine learning training, the optical machine
learning decryptor (MLD) acquires the capabilities of identifying a single decryption key (symmetric decryption, top) or entire classes of decryption
keys (asymmetric decryption, bottom), and decoding a multitude of messages using a single decryptor element. b The decryption system can be
considered a diffractive neural network for optical inference. Each layer of the network consists of N × N artificial neurons, secondary sources of waves
(details in Supplementary Methods). c Schematic of an MLD integrated with a CMOS chip. The nanoscale MLD is physically 3D printed by GD-TPN (d),
a nanofabrication method that gives precise control over the MLD neuron dimensions in the lateral and axial directions (e), achieving axial
nanostepping of 10 nm
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densities (Fig. S1). Nanolithographic methods22–27 are an
excellent candidate to fulfil this design requirement, as
they can—unlike PolyJet 3D printing—precisely realise
optical elements with nanometre feature sizes. Among the
nanolithographic methods, galvo-dithered two-photon
nanolithography (GD-TPN)8 stands out as the only
method that allows direct fabrication of three-
dimensional (3D), free-form structures in a single fabri-
cation step with lateral and azimuthal resolution sufficient
for devices, with applications in the NIR and visible
wavelength regimes. In addition to the high resolution
and design freedom, GD-TPN provides the flexibility to
print on arbitrary substrates without concern for charged
particle irradiation of off-the-shelf optoelectronic devices,
such as complementary metal-oxide–semiconductor
(CMOS) imaging sensors—fast, energy efficient and low-
cost microelectronic circuits widely used in modern
consumer products. The integration of optical machine
learning decryption systems with CMOS imaging can
enable unpowered optical decryption at the speed of light,
with the advantage that the decrypted images can be
directly transmitted, displayed and stored over standard
electronic communication channels.
In this work, we present a novel concept for compact

optical decryptors that can be integrated on common
CMOS chips (Fig. 1c–e). Using computer machine learning
based on error back-propagation methods, single-layer
holographic perceptrons are trained to perform critical
decryption of single or whole classes of images. By nano-
printing the machine learning decryptors (MLDs), which
are designed for operation in the NIR wavelength region,
with GD-TPN, we achieve a neuron density of over 500
million neurons per square centimetre, while controlling
the neuron height with a precision down to 10 nm.
The ability of the MLDs to execute the optical inference

tasks and perform unpowered decryption of several mes-
sages at the speed of light with a working distance as small
as 62.8 μm—an advantage for on-chip integration—is
experimentally shown. By printing the MLDs directly on a
CMOS chip, we achieve compact and highly integrated
devices, which not only outperform current optical

decryption methods, but also show the potential for appli-
cation of full optical inference devices in a wide range of
fields from computer vision to medical diagnostics.

Results
Design, training and optimisation
The MLD presented in this article is a single diffractive

element capable of scattering and directionally focusing
each of a multitude of images given as input and of
mapping them into a specific output. Once printed, the
MLD can optically perform the inference tasks of a single-
layer perceptron, mapping a variety of images on a sensor,
effectively realising the functionalities of decryption.

Computer-based machine learning training
The compact decryption system can be considered a dif-

fractive neural network21,28 working in transmission mode.
We modelled the MLD system on a computer to perform
the training. In our model, the neural network is composed
of three layers (input, MLD and output), each consisting of
N ×N resolvable pixels that act as artificial neurons, which
receive, modulate and transmit a light field (Fig. 1b). The
neurons of each layer are linked to the neurons of the
neighbouring layers through Rayleigh–Sommerfeld29 dif-
fraction. While the neurons of the input and output layers
are unbiased (i.e., uniform), each neuron of the diffractive
layer adds a bias in the form of a phase delay to the trans-
mitted signal. A cross-entropy loss function is defined to
evaluate the performance of the MLD with respect to the
desired target, and a machine learning algorithm iteratively
optimises the phase delay of each neuron in the diffractive
layer to minimise the loss function (Fig. S2). The ‘Methods’
and Supplementary Materials sections contain the details of
this TensorFlow-based design and training processes.

Compact multilayer training
The MLD perceptron30 is a basic neural network

building block that is shallow and can only learn linearly
separable functions. In a system composed of multiple
diffractive layers with a sufficient physical separation
between them, the artificial neurons of neighbouring

Table 1 Abbreviations.

MLD Machine learning decryptor MLD-T MLD trained to recognise the correct key and to visually communicate the

acceptance with a tick

CMLP Compact multilayer perceptron MLD-B MLD trained to act as a secure display, showing the image of a butterfly

9-MLD MLD able to decrypt nine classes of

handwritten letters

MLD-TIPS MLD-T optimised for IPS photoresist

3-MLD MLD able to decrypt three classes of

handwritten letters

MLD-BIPS MLD-B optimised for IPS photoresist

List of acronyms and abbreviations used in the text

Goi et al. Light: Science & Applications ����������(2021)�10:40� Page 3 of 11



412  | Light Sci Appl | 2021 | Vol 10 | Issue 3 LSA

layers are linked through Rayleigh–Sommerfeld diffrac-
tion31 and can optically execute the function they are
trained for. For these systems, increasing the number of
layers always improves the classification accuracy (Fig.
S3)32. The introduction of multiple diffractive layers
separated in space does, however, come at the cost of
losing compactness. To create a more powerful mechan-
ism for learning that still achieves compactness, we
investigate the use of a compact multilayer perceptron
(CMLP; Fig. 2a), where the layers adjoin. However, unlike
in the case of multiple well-separated diffractive layers, we
find that an increase in the number of layers in a CMLP
does not generally lead to an improvement in classifica-
tion accuracy. This outcome implies that the operation
implemented through multiple compact layers can be
combined into a single matrix operation, which can be
called a tailored linear multiplexor. The results in Fig. 2b
show that a CMLP composed of two adjoining layers
achieves an improvement in classification accuracy com-
pared to a single-layer MLD.

Symmetric and asymmetric decryption
To demonstrate the functionalities that MLDs can

achieve, we implement decryption using a specific key or
classes of keys, achieving symmetric and asymmetric
decryption, respectively (Fig. 1a, and Figs. S4 and S5). In
symmetric or single-key cryptography, data can be
encrypted and decrypted using a specific decryption key3

to selectively display a message. In our optical imple-
mentation of a symmetric decryption scheme, the
decryption key (an image of the letter A) is the only key
that, if propagated through the decryptor, retrieves the
message. On the other hand, asymmetric cryptography
provides security using classes of keys during the
encryption process3. In this way, any key belonging to the
key class can decrypt the corresponding message. In our
optical machine learning implementation of asymmetric
decryption, any key belonging to a specific key class (e.g.,
any image of a handwritten letter A) can decrypt the
message assigned to this key class. This ability can be
applied in multi-authentication schemes, such as
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biometric security, given that it can recognise images of
the same subject under different conditions.

Decryptor design
To evaluate the ability of MLDs to perform symmetric

decryption, we design two distinct optical decryptors. The
first decryptor, MLD-T, is trained to recognise the correct
key against other random keys belonging to three different
classes of handwritten letters, and to visually communicate
the acceptance or rejection of the input key (Figs. S6a and
S7a). The second decryptor, MLD-B, acts as a secure
display, showing the image of a butterfly in the output
plane only if the correct input key is given. Other input
keys are diffracted to the edge, leaving the output layer
dark (Figs. S6b and S7b). The ability to perform asym-
metric decryption is evaluated through the design of two
MLDs able to decrypt nine (9-MLD) and three (3-MLD)
classes of handwritten letters (Figs. S6c, d and S7c, d). Each
class of input letters is decrypted into a distinct rectan-
gular indicator on the output plane. All the decryptors are
designed to operate at a wavelength of 785 nm, which was
selected to match the transmission characteristics of the
photoresist used during fabrication. The details of the
training and test datasets are contained in the ‘Methods’
and Supplementary Materials sections.
The performance of the MLD, which is evaluated

through numerical testing, is strongly influenced by the
task the MLD is trained for (Fig. S8) and by the decryptor
physical parameters. This is due to the impact that the
size and density of the neurons have on the diffraction,
and therefore on the connection between the neurons in
neighbouring layers. The number of pixels (Fig. 2c and
Fig. S9), neuron density (Fig. 2d and Fig. S10) and distance
from the input plane to the MLD (D1) and from the MLD
to the output plane (D2; Fig. 2e and Fig. S11) must
therefore be finely tuned and optimised. The ‘Methods’
and Supplementary Materials sections contain the details
of this optimisation process.

MLD nanoprinting
The MLDs are realised by converting the calculated

phase delay of each neuron in the diffractive layer into a
relative height map (Fig. S12), that is, 3D nanoprinted
using the GD-TPN method1,2 (Fig. S13) in hybrid zinc
oxide photoresist (Fig. S14). Table ST1 and the ‘Methods’
and Supplementary Materials sections contain the details
of the GD-TPN method.
The use of GD-TPN allows us to precisely fabricate

neurons with an arbitrary diameter in the range of 200
−1000 nm (ref. 33), which results in a maximum neuron
density in the diffractive layer of 2.5 billion neurons per
square centimetre. For the particular MLDs considered in
this work, the optimal neuron diameter was determined
to be 413 and 419 nm, resulting in a neuron density of

over 500 million neurons per square centimetre. This is
six orders of magnitude higher than the neuron density of
current diffractive neural networks21. At the same time,
the use of galvo-dithering correction combined with an
acousto-optic modulator and a precise piezoelectric
nanotranslation stage gives us control over the axial
position of the focal spot with a precision down to 10 nm,
therefore, allowing precise regulation of the phase mod-
ulation in the diffractive layer (Fig. 3). Images of the 3D-
printed designs are shown in Fig. 3a and Fig. S15. To
demonstrate the ability of the GD-TPN method to print
high-quality MLDs, the neuron size and height are char-
acterised using atomic force microscopy (AFM; Fig. 3b–e
and Fig. S16). The AFM measurements clearly demon-
strate that the pixel size (419 nm for 9-MLD and 413 nm
for 3-MLD) and the height modulation (1.78 µm for 9-
MLD and 1.48 µm for 3-MLD) of the printed MLDs are as
designed through the learning process.

Full optical inference
To characterise the optical inference ability and quantify

the performance of the MLDs, we use the characterisation
setup depicted in Fig. S18. The input images of the
handwritten letters are generated by spatially modulating
the light from a 785 nm laser source using a spatial light
modulator (SLM) and projected on the input plane of the
MLD, using two 4f systems. The output plane of the MLD
is imaged through a lens system and detected using a
charge-coupled device (CCD) camera (Fig. S17, ‘Methods’
and Supplementary Materials).
To measure the experimental classification accuracy, we

compare the numerical and experimental output of the
MLD for five different images per letter class. In Fig. 4a, b,
and Figs. S18 and S19, we report the characterisation of
symmetric decryptors, MLD-T and MLD-B, as shown in
Fig. S6a, b. The experimental results quantitatively match
the theoretical expectation of 100% accuracy, proving that
the GD-TPN nanoprinted MLDs can act as reliable sym-
metric decryptors and secure displays. For the asymmetric
3-MLD and 9-MLD decryptors, the results in Fig. 4c, d
and Figs. S20–S22 clearly show the ability to direct the
input images to the detector region assigned to the cor-
responding letter class. To further evaluate the perfor-
mance of the 3D-printed MLD and understand the role of
noise in our experimental results, we calculate the dif-
fraction efficiencies (see Table ST2 and Supplementary
Methods) and the accuracy of our MLDs, with varying
degrees of normalised noise added to the camera readout
(Fig. S23). The experimental diffraction results are thereby
comparable with the results reported in the literature for
single-layer diffractive neural networks32. The match
between the experimental and numerical accuracies is
found to be 86.67% for the 3-MLD and 80% for the 9-
MLD. While the output pattern in Fig. 4d is grainier than
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layers are linked through Rayleigh–Sommerfeld diffrac-
tion31 and can optically execute the function they are
trained for. For these systems, increasing the number of
layers always improves the classification accuracy (Fig.
S3)32. The introduction of multiple diffractive layers
separated in space does, however, come at the cost of
losing compactness. To create a more powerful mechan-
ism for learning that still achieves compactness, we
investigate the use of a compact multilayer perceptron
(CMLP; Fig. 2a), where the layers adjoin. However, unlike
in the case of multiple well-separated diffractive layers, we
find that an increase in the number of layers in a CMLP
does not generally lead to an improvement in classifica-
tion accuracy. This outcome implies that the operation
implemented through multiple compact layers can be
combined into a single matrix operation, which can be
called a tailored linear multiplexor. The results in Fig. 2b
show that a CMLP composed of two adjoining layers
achieves an improvement in classification accuracy com-
pared to a single-layer MLD.

Symmetric and asymmetric decryption
To demonstrate the functionalities that MLDs can

achieve, we implement decryption using a specific key or
classes of keys, achieving symmetric and asymmetric
decryption, respectively (Fig. 1a, and Figs. S4 and S5). In
symmetric or single-key cryptography, data can be
encrypted and decrypted using a specific decryption key3

to selectively display a message. In our optical imple-
mentation of a symmetric decryption scheme, the
decryption key (an image of the letter A) is the only key
that, if propagated through the decryptor, retrieves the
message. On the other hand, asymmetric cryptography
provides security using classes of keys during the
encryption process3. In this way, any key belonging to the
key class can decrypt the corresponding message. In our
optical machine learning implementation of asymmetric
decryption, any key belonging to a specific key class (e.g.,
any image of a handwritten letter A) can decrypt the
message assigned to this key class. This ability can be
applied in multi-authentication schemes, such as
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biometric security, given that it can recognise images of
the same subject under different conditions.

Decryptor design
To evaluate the ability of MLDs to perform symmetric

decryption, we design two distinct optical decryptors. The
first decryptor, MLD-T, is trained to recognise the correct
key against other random keys belonging to three different
classes of handwritten letters, and to visually communicate
the acceptance or rejection of the input key (Figs. S6a and
S7a). The second decryptor, MLD-B, acts as a secure
display, showing the image of a butterfly in the output
plane only if the correct input key is given. Other input
keys are diffracted to the edge, leaving the output layer
dark (Figs. S6b and S7b). The ability to perform asym-
metric decryption is evaluated through the design of two
MLDs able to decrypt nine (9-MLD) and three (3-MLD)
classes of handwritten letters (Figs. S6c, d and S7c, d). Each
class of input letters is decrypted into a distinct rectan-
gular indicator on the output plane. All the decryptors are
designed to operate at a wavelength of 785 nm, which was
selected to match the transmission characteristics of the
photoresist used during fabrication. The details of the
training and test datasets are contained in the ‘Methods’
and Supplementary Materials sections.
The performance of the MLD, which is evaluated

through numerical testing, is strongly influenced by the
task the MLD is trained for (Fig. S8) and by the decryptor
physical parameters. This is due to the impact that the
size and density of the neurons have on the diffraction,
and therefore on the connection between the neurons in
neighbouring layers. The number of pixels (Fig. 2c and
Fig. S9), neuron density (Fig. 2d and Fig. S10) and distance
from the input plane to the MLD (D1) and from the MLD
to the output plane (D2; Fig. 2e and Fig. S11) must
therefore be finely tuned and optimised. The ‘Methods’
and Supplementary Materials sections contain the details
of this optimisation process.

MLD nanoprinting
The MLDs are realised by converting the calculated

phase delay of each neuron in the diffractive layer into a
relative height map (Fig. S12), that is, 3D nanoprinted
using the GD-TPN method1,2 (Fig. S13) in hybrid zinc
oxide photoresist (Fig. S14). Table ST1 and the ‘Methods’
and Supplementary Materials sections contain the details
of the GD-TPN method.
The use of GD-TPN allows us to precisely fabricate

neurons with an arbitrary diameter in the range of 200
−1000 nm (ref. 33), which results in a maximum neuron
density in the diffractive layer of 2.5 billion neurons per
square centimetre. For the particular MLDs considered in
this work, the optimal neuron diameter was determined
to be 413 and 419 nm, resulting in a neuron density of

over 500 million neurons per square centimetre. This is
six orders of magnitude higher than the neuron density of
current diffractive neural networks21. At the same time,
the use of galvo-dithering correction combined with an
acousto-optic modulator and a precise piezoelectric
nanotranslation stage gives us control over the axial
position of the focal spot with a precision down to 10 nm,
therefore, allowing precise regulation of the phase mod-
ulation in the diffractive layer (Fig. 3). Images of the 3D-
printed designs are shown in Fig. 3a and Fig. S15. To
demonstrate the ability of the GD-TPN method to print
high-quality MLDs, the neuron size and height are char-
acterised using atomic force microscopy (AFM; Fig. 3b–e
and Fig. S16). The AFM measurements clearly demon-
strate that the pixel size (419 nm for 9-MLD and 413 nm
for 3-MLD) and the height modulation (1.78 µm for 9-
MLD and 1.48 µm for 3-MLD) of the printed MLDs are as
designed through the learning process.

Full optical inference
To characterise the optical inference ability and quantify

the performance of the MLDs, we use the characterisation
setup depicted in Fig. S18. The input images of the
handwritten letters are generated by spatially modulating
the light from a 785 nm laser source using a spatial light
modulator (SLM) and projected on the input plane of the
MLD, using two 4f systems. The output plane of the MLD
is imaged through a lens system and detected using a
charge-coupled device (CCD) camera (Fig. S17, ‘Methods’
and Supplementary Materials).
To measure the experimental classification accuracy, we

compare the numerical and experimental output of the
MLD for five different images per letter class. In Fig. 4a, b,
and Figs. S18 and S19, we report the characterisation of
symmetric decryptors, MLD-T and MLD-B, as shown in
Fig. S6a, b. The experimental results quantitatively match
the theoretical expectation of 100% accuracy, proving that
the GD-TPN nanoprinted MLDs can act as reliable sym-
metric decryptors and secure displays. For the asymmetric
3-MLD and 9-MLD decryptors, the results in Fig. 4c, d
and Figs. S20–S22 clearly show the ability to direct the
input images to the detector region assigned to the cor-
responding letter class. To further evaluate the perfor-
mance of the 3D-printed MLD and understand the role of
noise in our experimental results, we calculate the dif-
fraction efficiencies (see Table ST2 and Supplementary
Methods) and the accuracy of our MLDs, with varying
degrees of normalised noise added to the camera readout
(Fig. S23). The experimental diffraction results are thereby
comparable with the results reported in the literature for
single-layer diffractive neural networks32. The match
between the experimental and numerical accuracies is
found to be 86.67% for the 3-MLD and 80% for the 9-
MLD. While the output pattern in Fig. 4d is grainier than
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that in Fig. 4c due to the more complex diffractive element
pattern, the diminished performances of the experimental
MLDs compared with the numerical results can be
explained by 3D printing errors, unaccounted absorption-
related losses due to the inhomogeneous material and
other experimental error sources in the characterisation
setup.

CMOS integration
Recently, photonics has been leveraging on-chip tech-

nology to cope with the growing demand for optical
communications in networking and industrial applica-
tions. To deploy our new principle in an on-chip appli-
cation, we print MLDs on CMOS chips. Compared with
other technologies, such as CCD sensors, CMOS chips are
faster, more energy efficient, cheaper and already widely
used in modern consumer products. The combination of
all-optical MLDs with CMOS technology can enable
harnessing of their complementary physics through inte-
grated solutions on a single chip34, meeting the demand
for a large bandwidth combined with low-energy con-
sumption and cost (Supplementary Movie S1).
We demonstrate the direct manufacturing and imaging

of MLDs on a CMOS sensor (Fig. 5a–c and Fig. S23). For
GD-TPN fabrication, we use a dip-in approach35 and a
liquid photoresist as opposed to the zirconium-based
photoresist used in the previous experiments. This is due

to the zirconium-based photoresist deposition and
development methods being incompatible with fabrica-
tion on the packaged CMOS chip. To ensure the proper
distance between the MLD and the CMOS chip surface,
we printed the MLDs on pillars. Further information on
the pretreatments, design and nanoprinting can be found
in Figs. S24 and S25, and the ‘Methods’ and Supplemen-
tary Materials sections.
To show the mechanical stability and repeatability of

printing MLDs on a CMOS chip, we fabricate an array of
MLDs (Fig. S24). The SEM (Fig. 5 and Fig. S27) and AFM
(Fig. S28) characterisations prove that MLDs with the
required geometry can successfully be printed on CMOS
chips with the GD-TPN method. The images acquired by
the CMOS sensor reported in Fig. 5d, e and Fig. S29
confirm the optical quality of the MLDs and their ability
to decrypt the key image, with an accuracy of 100%.
Compared with the performance of MLDs printed using
hybrid zinc oxide photoresist, this experiment yields a
poorer match between the experimental and numerical
test results in terms of the energy distribution and
intensity contrast for the tick and cross output in the case
of MLD-T printed with IPS (MLD-TIPS), and for the
butterfly and frame output in the case of MLD-B printed
with IPS (MLD-BIPS; Fig. S30). These results can be
explained by unaccounted optical losses, structural dis-
tortions due to material shrinkage, asymmetries in the
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pixel shapes and lower resolution images, all factors that
affect the quality of the output image.

Discussion
In this work, we have presented high-neuron-density

MLDs for optical decryption through all-optical inference in
the NIR wavelength region. We realise compact and highly

integrated decryptors by nanoprinting the MLDs directly on
a CMOS chip, using GD-TPN. Our experimental results
demonstrate the application of MLDs as power-efficient
optical decryptors and secure functional displays. By com-
bining unpowered, pretrained smart optical devices with
optical imaging sensors, we enable the sensors to perform
complex functions as simply as putting glasses on them.
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that in Fig. 4c due to the more complex diffractive element
pattern, the diminished performances of the experimental
MLDs compared with the numerical results can be
explained by 3D printing errors, unaccounted absorption-
related losses due to the inhomogeneous material and
other experimental error sources in the characterisation
setup.

CMOS integration
Recently, photonics has been leveraging on-chip tech-

nology to cope with the growing demand for optical
communications in networking and industrial applica-
tions. To deploy our new principle in an on-chip appli-
cation, we print MLDs on CMOS chips. Compared with
other technologies, such as CCD sensors, CMOS chips are
faster, more energy efficient, cheaper and already widely
used in modern consumer products. The combination of
all-optical MLDs with CMOS technology can enable
harnessing of their complementary physics through inte-
grated solutions on a single chip34, meeting the demand
for a large bandwidth combined with low-energy con-
sumption and cost (Supplementary Movie S1).
We demonstrate the direct manufacturing and imaging

of MLDs on a CMOS sensor (Fig. 5a–c and Fig. S23). For
GD-TPN fabrication, we use a dip-in approach35 and a
liquid photoresist as opposed to the zirconium-based
photoresist used in the previous experiments. This is due

to the zirconium-based photoresist deposition and
development methods being incompatible with fabrica-
tion on the packaged CMOS chip. To ensure the proper
distance between the MLD and the CMOS chip surface,
we printed the MLDs on pillars. Further information on
the pretreatments, design and nanoprinting can be found
in Figs. S24 and S25, and the ‘Methods’ and Supplemen-
tary Materials sections.
To show the mechanical stability and repeatability of

printing MLDs on a CMOS chip, we fabricate an array of
MLDs (Fig. S24). The SEM (Fig. 5 and Fig. S27) and AFM
(Fig. S28) characterisations prove that MLDs with the
required geometry can successfully be printed on CMOS
chips with the GD-TPN method. The images acquired by
the CMOS sensor reported in Fig. 5d, e and Fig. S29
confirm the optical quality of the MLDs and their ability
to decrypt the key image, with an accuracy of 100%.
Compared with the performance of MLDs printed using
hybrid zinc oxide photoresist, this experiment yields a
poorer match between the experimental and numerical
test results in terms of the energy distribution and
intensity contrast for the tick and cross output in the case
of MLD-T printed with IPS (MLD-TIPS), and for the
butterfly and frame output in the case of MLD-B printed
with IPS (MLD-BIPS; Fig. S30). These results can be
explained by unaccounted optical losses, structural dis-
tortions due to material shrinkage, asymmetries in the
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Fig. 3 MLD nanoprinted with GD-TPN. a Scanning electron microscopy (SEM) image of the 3D nanoprinted 9-MLD. The two calculated compact
layers (Fig. 2a) are combined in a single compact double layer and printed in a single printing session. AFM topographical image (b) of a 9-MLD
section. c Height profile along a row of neurons of the 3D-printed 9-MLD. The line profile is taken along the line highlighted in blue in b. The yellow
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distributions for the 3-MLD
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pixel shapes and lower resolution images, all factors that
affect the quality of the output image.

Discussion
In this work, we have presented high-neuron-density

MLDs for optical decryption through all-optical inference in
the NIR wavelength region. We realise compact and highly

integrated decryptors by nanoprinting the MLDs directly on
a CMOS chip, using GD-TPN. Our experimental results
demonstrate the application of MLDs as power-efficient
optical decryptors and secure functional displays. By com-
bining unpowered, pretrained smart optical devices with
optical imaging sensors, we enable the sensors to perform
complex functions as simply as putting glasses on them.
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Fig. 4 Experimental verification of the MLD performance through optical inference. Schematic of the machine learning decryption function
implemented, examples of the theoretical and experimental input fields, and corresponding output patterns and energy distribution percentages for
MLD-T (a), MLD-B (b), 3-MLD (c) and 9-MLD (d). The complete results and performance analysis are reported in Figs. S19–S23. The images of the input
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pixels (1.88 × 1.88 mm2) in the case of MLD-T and MLD-B. Each MLD output image was multiplied with the mask related to that specific MLD design
before quantifying the intensity distribution (see Supplementary Materials)
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The nanoscale neuron size within the NIR MLDs not
only provides the advantage of a high neuron density, but
also results in a short distance (the MLD operative dis-
tance, i.e., the distance between the input and output
planes, is one to three orders of magnitude smaller than
that in other implementations16,18,19,21) and more con-
nections between the neurons due to the increased dif-
fraction angles. These features lead to a three orders of
magnitude increase in the operational frequency, and thus
in the operations per second (FLOPS) compared with the
devices in the THz region (see Table ST3 and Supple-
mentary Methods). In this regard, with superresolution36

and chemical etching37 methods, smaller feature sizes can
be achieved (<10 nm), potentially creating a completely
new platform for smart holographic machine learning
systems.
The performance of the presented decryptors has to be

critically evaluated with respect to the intended applica-
tion. The security the decryptors presented in this work
can provide is limited by the number of key classes they
are trained to recognise, which results in a theoretical

false match rate, i.e., the probability that a generic input is
interpreted as a correct key, of 33% and 11% for the MLD-
3 and MLD-9 decryptors, respectively.
As a machine-learning-based classification device, the

decryptors presented in this work will always show a
certain false match rate—a challenge inherent to the field
of machine learning classification38–40. A number of
techniques have therefore been developed to decrease the
false match rate in a given classification setting, which can
be equally applied to the decryptors presented in this
work. For example, the training dataset can be increased
to include generic inputs or random keys, which are then
mapped to either the frame of the output plane or a
rejection detector, as shown for MLD-B or MLD-T,
respectively. In addition, a classification threshold can be
applied to the output plane, in which the intensity of a
given detector needs to be at a certain level above the
intensity of the other detectors to be classified, as the
correct decryption key. In addition, the cointegration of
our MLDs directly on CMOS chips opens the possibility
of further analysis of the output image collected at the
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detector plane in the electronic domain, which has been
shown to be an energy-efficient method of hybrid
optoelectronic image classification41,42, achieving accura-
cies up to 98.71% (ref. 39).
Our approach is based on static elements realised with

linear materials. Dynamicity and optical non-linearities
are elements essential for the in situ training of optical
neural networks18,43. While reconfigurability can be
incorporated into MLDs using compact reconfigurable
optical elements44–48 and metamaterials49–51, non-linear
materials, e.g., chalcogenide glasses32 or ferroelectric thin
films33, can be used to include non-linearities, thus
enabling closed-loop machine learning with the equiva-
lent of a non-linear activation function to further improve
the MLD performance52. The wavelength region targeted
by our MLDs, the compactness and the possibility of
performing a multitude of tasks, combined with the
intrinsic compatibility with electronic chip manufactur-
ing, including but not limited to CMOS chips, pave the
way for a completely new generation of fast and power-
efficient functional optical elements to be applied in
security schemes8,9, medical diagnostics5 and comput-
ing7,52–55 offering a smaller footprint, a lower-energy
consumption14 and a lower cost than present solutions.

Materials and methods
TensorFlow simulations
We achieve the MLD design using the TensorFlow

(Google Inc.)56 framework, used to implement a forward
propagation model, as illustrated in Fig. S2. For the free
space propagation of light between different planes of the
system, we employ the Rayleigh–Sommerfeld diffraction
theory in the far-field regime29. To build a realistic model
and match the experimental conditions, we consider the
absorption of the material in the calculations (see Sup-
plementary Materials) and the circular shape of the pixels.
The refractive indexes and extinction coefficients are
confirmed by ellipsometry (Fig. S14). We use the cross-
entropy against the target image as a loss function32, with
the aim of maximising the normalised signal of each
target’s corresponding detector region, while minimising
the total signal outside of all the detector regions. We
employ the stochastic gradient descent algorithm Adam57

to back-propagate58 the errors and update the MLD phase
parameters to minimise the loss function. The desired
mapping functions between the input and output planes
are achieved after ten epochs. The model is implemented
using Python version 3.5.0 and TensorFlow framework
version 1.4.0 (Google Inc.).

Training dataset processing
The handwritten letter images are taken from the ‘A–Z

Handwritten Alphabets’ dataset available on www.kaggle.
com (ref. 59), which combines the NIST60 and MNIST61

datasets. The butterfly and key images are designed by us.
For each letter, we use 6000 images for training, and 1000
images are used for blind testing. All the images are
converted into greyscale and resized to match our designs.

Sample nanoprinting
Polymeric62 MLDs are printed by the GD-TPN1,2

method (Fig. S12), a method based on femtosecond laser
pulses and two-photon absorption. A femtosecond fibre
laser (Coherent Fidelity II) combined with a frequency
doubler (APE HarmoniXX) provides laser light at a
wavelength of 535 nm. The laser pulses with a width of
55 fs and a repetition rate of 70MHz are steered by a
combination of a two-dimensional galvo mirror (Thor-
labs), and a 4f imaging system into a 1.4 NA 100× oil
immersion objective (Olympus). Compared with the
classic TPN, the circular motion of the mirrors exposes a
larger lateral volume of material while simultaneously
reducing the total exposure in the axial direction and
improving the axial resolution1. A piezoelectric nano-
translation stage (Physik Instrumente) is used to trace out
the microstructures in the photoresist, while the galvo
mirrors trace the laser focus in a circle. A zirconium-
based hybrid organic–inorganic photoresist is used to
create the templates due to its excellent resistance to
shrinkage62. After the GD-TPN procedure, the sample is
rinsed in a 1-propanol:2-propanol (30:70) solvent mixture
for 30min and then dried at room temperature.
We manufacture MLDs on a Sony IMX219 NoIR

CMOS image sensor from a Raspberry Pi Camera Mod-
ule. We develop a dip-in GD-TPN approach, using
commercial IPS (Nanoscribe GmbH) photoresist. Before
manufacturing, we remove the microlenses and clean the
sensor surface with isopropanol. To precisely regulate the
distance between the structures and the imaging plane,
the MLDs are mounted on supports with a height of
47.1 µm. After the GD-TPN procedure, the sample is
developed in SU-8 developer, rinsed with isopropanol and
then dried at room temperature.

IR testing setup
A schematic diagram of the experimental setup is given

in Fig. S17. The light beam is generated through a Thorlabs
OBIS 785 nm laser source. The polarised beam is directed
on a Hamamatsu SLM X13138-07 (620–1100 nm). After
this, two 4f systems resize the image of the handwritten
letter to match the MLD dimensions and focus it on the
input imaging plane. The use of a high-magnification
objective (Olympus UPLANFL N, 60× 0.9 NA) in the 4f
system is necessary to obtain an input image, with a size
compatible with the MLD. After passing through the MLD,
the signal is collected by an objective (Olympus UPLANFL
N, 60× 0.9 NA), focused on the output plane and detected
by a CCD camera (Basler ace acA2040-90uc, frame rate
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The nanoscale neuron size within the NIR MLDs not
only provides the advantage of a high neuron density, but
also results in a short distance (the MLD operative dis-
tance, i.e., the distance between the input and output
planes, is one to three orders of magnitude smaller than
that in other implementations16,18,19,21) and more con-
nections between the neurons due to the increased dif-
fraction angles. These features lead to a three orders of
magnitude increase in the operational frequency, and thus
in the operations per second (FLOPS) compared with the
devices in the THz region (see Table ST3 and Supple-
mentary Methods). In this regard, with superresolution36

and chemical etching37 methods, smaller feature sizes can
be achieved (<10 nm), potentially creating a completely
new platform for smart holographic machine learning
systems.
The performance of the presented decryptors has to be

critically evaluated with respect to the intended applica-
tion. The security the decryptors presented in this work
can provide is limited by the number of key classes they
are trained to recognise, which results in a theoretical

false match rate, i.e., the probability that a generic input is
interpreted as a correct key, of 33% and 11% for the MLD-
3 and MLD-9 decryptors, respectively.
As a machine-learning-based classification device, the

decryptors presented in this work will always show a
certain false match rate—a challenge inherent to the field
of machine learning classification38–40. A number of
techniques have therefore been developed to decrease the
false match rate in a given classification setting, which can
be equally applied to the decryptors presented in this
work. For example, the training dataset can be increased
to include generic inputs or random keys, which are then
mapped to either the frame of the output plane or a
rejection detector, as shown for MLD-B or MLD-T,
respectively. In addition, a classification threshold can be
applied to the output plane, in which the intensity of a
given detector needs to be at a certain level above the
intensity of the other detectors to be classified, as the
correct decryption key. In addition, the cointegration of
our MLDs directly on CMOS chips opens the possibility
of further analysis of the output image collected at the
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detector plane in the electronic domain, which has been
shown to be an energy-efficient method of hybrid
optoelectronic image classification41,42, achieving accura-
cies up to 98.71% (ref. 39).
Our approach is based on static elements realised with

linear materials. Dynamicity and optical non-linearities
are elements essential for the in situ training of optical
neural networks18,43. While reconfigurability can be
incorporated into MLDs using compact reconfigurable
optical elements44–48 and metamaterials49–51, non-linear
materials, e.g., chalcogenide glasses32 or ferroelectric thin
films33, can be used to include non-linearities, thus
enabling closed-loop machine learning with the equiva-
lent of a non-linear activation function to further improve
the MLD performance52. The wavelength region targeted
by our MLDs, the compactness and the possibility of
performing a multitude of tasks, combined with the
intrinsic compatibility with electronic chip manufactur-
ing, including but not limited to CMOS chips, pave the
way for a completely new generation of fast and power-
efficient functional optical elements to be applied in
security schemes8,9, medical diagnostics5 and comput-
ing7,52–55 offering a smaller footprint, a lower-energy
consumption14 and a lower cost than present solutions.

Materials and methods
TensorFlow simulations
We achieve the MLD design using the TensorFlow

(Google Inc.)56 framework, used to implement a forward
propagation model, as illustrated in Fig. S2. For the free
space propagation of light between different planes of the
system, we employ the Rayleigh–Sommerfeld diffraction
theory in the far-field regime29. To build a realistic model
and match the experimental conditions, we consider the
absorption of the material in the calculations (see Sup-
plementary Materials) and the circular shape of the pixels.
The refractive indexes and extinction coefficients are
confirmed by ellipsometry (Fig. S14). We use the cross-
entropy against the target image as a loss function32, with
the aim of maximising the normalised signal of each
target’s corresponding detector region, while minimising
the total signal outside of all the detector regions. We
employ the stochastic gradient descent algorithm Adam57

to back-propagate58 the errors and update the MLD phase
parameters to minimise the loss function. The desired
mapping functions between the input and output planes
are achieved after ten epochs. The model is implemented
using Python version 3.5.0 and TensorFlow framework
version 1.4.0 (Google Inc.).

Training dataset processing
The handwritten letter images are taken from the ‘A–Z

Handwritten Alphabets’ dataset available on www.kaggle.
com (ref. 59), which combines the NIST60 and MNIST61

datasets. The butterfly and key images are designed by us.
For each letter, we use 6000 images for training, and 1000
images are used for blind testing. All the images are
converted into greyscale and resized to match our designs.

Sample nanoprinting
Polymeric62 MLDs are printed by the GD-TPN1,2

method (Fig. S12), a method based on femtosecond laser
pulses and two-photon absorption. A femtosecond fibre
laser (Coherent Fidelity II) combined with a frequency
doubler (APE HarmoniXX) provides laser light at a
wavelength of 535 nm. The laser pulses with a width of
55 fs and a repetition rate of 70MHz are steered by a
combination of a two-dimensional galvo mirror (Thor-
labs), and a 4f imaging system into a 1.4 NA 100× oil
immersion objective (Olympus). Compared with the
classic TPN, the circular motion of the mirrors exposes a
larger lateral volume of material while simultaneously
reducing the total exposure in the axial direction and
improving the axial resolution1. A piezoelectric nano-
translation stage (Physik Instrumente) is used to trace out
the microstructures in the photoresist, while the galvo
mirrors trace the laser focus in a circle. A zirconium-
based hybrid organic–inorganic photoresist is used to
create the templates due to its excellent resistance to
shrinkage62. After the GD-TPN procedure, the sample is
rinsed in a 1-propanol:2-propanol (30:70) solvent mixture
for 30min and then dried at room temperature.
We manufacture MLDs on a Sony IMX219 NoIR

CMOS image sensor from a Raspberry Pi Camera Mod-
ule. We develop a dip-in GD-TPN approach, using
commercial IPS (Nanoscribe GmbH) photoresist. Before
manufacturing, we remove the microlenses and clean the
sensor surface with isopropanol. To precisely regulate the
distance between the structures and the imaging plane,
the MLDs are mounted on supports with a height of
47.1 µm. After the GD-TPN procedure, the sample is
developed in SU-8 developer, rinsed with isopropanol and
then dried at room temperature.

IR testing setup
A schematic diagram of the experimental setup is given

in Fig. S17. The light beam is generated through a Thorlabs
OBIS 785 nm laser source. The polarised beam is directed
on a Hamamatsu SLM X13138-07 (620–1100 nm). After
this, two 4f systems resize the image of the handwritten
letter to match the MLD dimensions and focus it on the
input imaging plane. The use of a high-magnification
objective (Olympus UPLANFL N, 60× 0.9 NA) in the 4f
system is necessary to obtain an input image, with a size
compatible with the MLD. After passing through the MLD,
the signal is collected by an objective (Olympus UPLANFL
N, 60× 0.9 NA), focused on the output plane and detected
by a CCD camera (Basler ace acA2040-90uc, frame rate
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90 Hz). In the case of the MLDs printed on the CMOS
sensor, the output image is collected directly by the CMOS
sensor (Sony IMX219 NoIR, frame rate 60 Hz).
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90 Hz). In the case of the MLDs printed on the CMOS
sensor, the output image is collected directly by the CMOS
sensor (Sony IMX219 NoIR, frame rate 60 Hz).
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