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Abstract: Early diagnosis of brain tumors is often hindered by non-specific symptoms,
particularly in eloquent brain regions where open surgery for tissue sampling is unfeasible.
This limitation increases the risk of misdiagnosis due to tumor heterogeneity in stereotactic
biopsies. Label-free diagnostic methods, including intraoperative probes and cellular origin
analysis techniques, hold promise for improving diagnostic accuracy. Polarimetry offers valuable
information on the polarization properties of biomedical samples, yet it may not fully reveal
specific structural characteristics. The interpretative scope of polarimetric data is sometimes
constrained by the limitations of existing decomposition methods. On the other hand, dynamic
laser speckle analysis (DLSA), a burgeoning technique, not only does not account for the
polarimetric attributes but also is known for tracking only the temporal activity of the dynamic
samples. This study bridges these gaps by synergizing conventional polarimetric imaging with
DLSA for an in-depth examination of sample polarization properties. The effectiveness of our
system is shown by analyzing the collection of polarimetric images of various tissue samples,
utilizing a variety of adapted numerical and graphical statistical post-processing methods.

1. Introduction

The primary symptoms of brain tumors are non-specific, including headaches, paresthesia,
dementia, seizures, personality disorders, and sometimes gait disturbances, which often hinder
early diagnosis [1, 2]. Primary brain neoplasms may originate from brain parenchymal cells,
meninges, cranial nerves, the hypophysial gland, or the pineal gland, thus possessing a vast
diversity of origins with overlapping radiological features. This necessitates pathological
assessment of the tissues obtained from surgery. A significant challenge arises with tumors in
eloquent areas where open surgery is not feasible, leading to an increased risk of misdiagnosis
due to tumor heterogeneity in stereotactic biopsies [3–8]. The biopsy may not sample the most
aggressive part of the tumor, and immunohistochemistry (IHC) results may be indefinite or
inapplicable due to the limited tissue available [9–11]. Therefore, developing label-free imaging
techniques that can be translated into clinical assessments as intra-operative probes or methods
to differentiate tumor specimens based on their cellular origin parameters could significantly
improve diagnostic accuracy. Polarimetric imaging has enhanced the pathological investigation
of tumoral tissues. Numerous studies have explored the potential of polarimetric Mueller matrix
microscopy to distinguish cancerous and non-cancerous tissues or cancerous tissues of different
pathological origins [12–19]. The advent of multispectral polarimetric imaging has further
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enhanced the precision of diagnosing tumor residues and detecting cancer regression after
neoadjuvant chemotherapy [20,21]. Polarimetric imaging, as a label-free technique, addresses
the drawbacks of conventional pathological assessments, such as the need for sample fixation,
the lack of localizing potential due to its ex vivo nature, and the background results that can be
indistinguishable from true positive patterns. Consequently, polarimetric imaging has prompted a
ground-breaking change in the context of cancer diagnosis, namely, label-free and fast procedures,
accurate and easy-to-interpret results, lack of operator dependency, in vivo applicability, and
reproducibility.

Polarimetric imaging plays a crucial role in the analysis of biological tissue samples, revealing
valuable details about their optical characteristics [18, 22, 23]. The Mueller matrix, a key
component in polarimetric analysis, is composed of 16 elements that encapsulate the polarizing
effects of the sample on light [24–26]. Although the Mueller matrix contains rich structural
information about materials, in most samples, all polarization effects occur together and in no
particular order, resulting in each polarization phenomenon being covertly stored within the
elements of the Mueller matrix. Therefore, often a set of different elements collectively represents
a polarization characteristic in a sample, and a single element alone cannot provide complete
information. Consequently, direct access to information can be challenging due to the lack of
a clear correlation between each element of the matrix and the microstructures of the sample.
Hence, the most important challenge after calculating the Mueller matrix is the interpretation
and analysis of the recorded information. For this purpose, various decomposition methods have
been developed, such as the Lu-Chipman decomposition, Cloude-Pottier decomposition, and
others [27, 28]. Each method reveals different aspects of the sample’s polarization properties,
but none can single-handedly provide a comprehensive understanding. Consequently, a holistic
approach that combines multiple decomposition methods may be required to achieve a more
complete grasp of the polarization information [29, 30]. Polarimetry is extensively employed
with a variety of light sources, including lamps, light-emitting diodes (LEDs), and lasers, offering
significant advantages in diverse applications. However, unlike other sources typically used in
polarimetric imaging, coherent sources, like lasers, may provide superior contrast and polarization
control. Coherent light is instrumental due to its high degree of polarization (DoP), essential
for accurately capturing polarization parameters including DoP, degree of linear polarization
(DoLP), and degree of circular polarization (DoCP) [16, 27, 31, 32]. These parameters are
critical in distinctly characterizing and differentiating tissue properties, a necessity in applications
like biomedical imaging and remote sensing. The utilization of coherent light in biomedical
contexts, including studies on brain neoplasms, aligns with safety standards when operated within
controlled parameters and exposure limits. On the other hand, incoherent light sources, despite
offering noise and speckle-free imagery, often fall short in providing high-quality, high-contrast
images of tissues. Moreover, most tissue samples tend to diffuse coherent light, impeding image
formation. Consequently, conventional imaging-based methods may not be ideally suited for
tissue studies [30, 33].

Dynamic laser speckle analysis (DLSA) has emerged as a promising technique, proving its
efficacy in both material and life sciences [34–37]. This method analyzes laser speckle patterns,
which are fluctuations in intensity caused by coherent light scattering from a surface or medium,
providing detailed information about a sample’s dynamic properties [38, 39]. Since the invention
of the laser, the speckle phenomenon has been extensively investigated, with studies focusing on
reflections from living objects and transitive samples [35,40]. Dynamic speckle, appearing as
randomly granular patterns due to coherent light illumination, results from scatterer movement,
optical path changes, internal evolution, or combinations of factors. The dynamic activity of
speckle patterns is a useful, non-destructive method for studying various activities such as
ripening, drying, osmosis, Brownian motion, lipid phase separation, crumpled papers, and pitting
phenomena [35, 41–45]. The statistical characteristics of dynamic speckle have been extensively
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treated in various studies [46–49], with many studies assigning numbers to characterize activity
and correlate with measurements of interest [39, 50–52]. Visual methodologies are often favored
over numerical approaches in biological samples due to their capability to produce comprehensive
two-dimensional (2D) activity maps across the entire field. Prominent visual techniques for
extracting data from speckle patterns include Fujii’s method, Generalized Difference (GD),
Weighted Generalized Difference, Mean Windowed Difference (MWD), Structural Function, and
the Modified Structural Function (MSF), among others. The Fujii technique has been identified
as particularly effective for the visual analysis of dynamic speckle data, as supported by recent
studies [53–56].

In this study, we present a novel approach that synergizes polarimetry and DLSA to leverage
the strengths of both methods. This integration could potentially overcome some limitations of
current imaging and diagnostic techniques, offering a more robust and comprehensive analysis
of tissue samples. Our methodology retains the benefits of using a coherent light source for
polarimetry while effectively bypassing its shortcomings by shifting the focus to variations in
laser speckle patterns across the recorded images as indicators of tissue polarization properties.
By applying a range of statistical post-processing techniques, primarily tailored for DLSA, to
the series of polarimetric images, we effectively address the challenges associated with Mueller
matrices and conventional decomposition methods in data interpretation. This novel approach
has the potential to improve the accuracy and efficiency of diagnosing various medical conditions,
particularly in oncology.

2. Materials and Methods

The proposed polarization-driven DLSA is used to distinguish glioblastoma, the most aggressive
subtype of brain neoplasms, from other space-occupying tumoral lesions of the brain, including
meningioma, medulloblastoma, subependymomas, and low-grade gliomas. Glioblastoma is
characterized by increased microvascular density, necrosis, and high cellular proliferation. In
contrast-enhanced T1 weighted magnetic resonance imaging (MRI) data, areas of heterogeneous
contrast enhancement with cysts or necrotic niches are present, and in T2/fluid-attenuated
inversion recovery (FLAIR) images, extensive vasogenic edema is observed. Meningiomas are
tumors originating from the meninges (e.g., dura or arachnoid) surrounding the brain, located
extra-axially, with homogeneous contrast enhancement in T1-weighted MRI and may also be
surrounded by vasogenic edema. Meningiomas are mostly located at the cerebellopontine
angle, making tissue diagnosis difficult. Medulloblastomas are tumors frequently seen in the
posterior fossa with prominent contrast enhancement on T1-weighted MRI. Subependymomas
are glial tumors originating from ependymal cells of the cerebral ventricles and usually enhance
after intravenous (IV) contrast administration in MRI evaluations. Low-grade gliomas are
slow-growing tumors originating from glial cells with low malignant potential and a non-contrast
enhancing nature in MRI investigations.

We conduct a proof-of-concept experiment to differentiate five different brain neoplasms tested
in Hematoxylin and Eosin (H&E)-stained slides: glioblastoma multiforme (GBM), ependymoma,
meningioma, medulloblastoma, and low-grade glioma. GBM is a highly aggressive type of
brain tumor characterized by rapid growth and a tendency to spread quickly. Ependymomas
arise from the ependymal cells lining the ventricles of the brain and the center of the spinal
cord. Meningiomas are common brain tumors arising from the meninges, the membranous
layers surrounding the brain and spinal cord. Medulloblastomas are highly malignant primary
brain tumors originating in the cerebellum, common in children. Low-grade gliomas are
slower-growing brain tumors with lower malignant potential. Representative histopathological
images of the brain tumors under this study are shown in Fig. 1. These images are standard
in the pathology field, providing a clear view of the tissue structures and their pathological
characteristics. However, they do not capture the polarization characteristics.
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Fig. 1. Representative histopathological images with corresponding diagnostic im-
munohistochemical staining of the tumor types studied: (a) GBM, (b) ependymoma,
(c) meningioma, (d) medulloblastoma, (e) low-grade glioma.

The polarization characteristics of different tissue samples are influenced by their unique
microstructural and compositional properties. Each type of brain tumor has distinct optical
properties, such as varying degrees of birefringence, scattering coefficients, and absorption rates,
which affect how polarized light interacts with the tissue. For instance, GBM exhibits higher
heterogeneity in cellular and extracellular structures compared to low-grade gliomas, leading to
more complex polarization patterns. Meningiomas, being more fibrous, show distinct birefringent
properties, while medulloblastomas, with their denser cellular packing, result in different
scattering patterns [18, 30]. Our method leverages these inherent differences by combining
polarimetric imaging, which captures the polarization state changes, with adapted DLSA. This
synergy allows us to differentiate tissues based on their unique responses to polarized light.
The proposed non-invasive, label-free technique may be used to distinguish the aforementioned
intracranial pathologies and can be further extended to preclinical and clinical assessments.

2.1. Ethical Statement

This study was reviewed and approved by the Ethics Committee of the Iran University of Medical
Sciences, Tehran, Iran (IR_IUMS.REC.1397.1237). All procedures were performed in strict
adherence to the Declaration of Helsinki – WMA – The World Medical Association 2018.

2.2. Patients

Patients were enrolled in a cohort investigation of referred cases to Firoozgar Hospital, Tehran,
Iran, in 2022. These patients presented with symptoms and signs of space-occupying tumoral
brain lesions, which were newly diagnosed following MRI investigations, surgical intervention,
and definitive pathological evaluation of tissues obtained from surgical procedures.

2.3. Surgical Procedure

The surgical procedures included open or endoscopic, total or subtotal resection of the tumor
following MRI investigations. Tissue samples were obtained for precise pathological analyses.
No corticosteroids or anticonvulsants were prescribed prior to surgery.
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2.4. Pathological Analysis

Pathological investigations involved the immediate fixation of samples in formalin post-surgery,
followed by paraffin embedding and sectioning. In cases where a definitive diagnosis was
not achieved through direct analysis of the H&E-stained slides, immunohistochemistry (IHC)
results from the pathology department of Firoozgar Hospital, Tehran, Iran, were utilized to reach
conclusive final diagnoses, serving as the gold standard technique.

2.5. Experimental Procedure

As previously discussed, while incoherent light sources typically yield noise- and speckle-free
images, they often lack the high contrast and quality required for detailed tissue imaging. On the
other hand, most tissue samples diffuse coherent light, hindering clear image formation. This
challenge prompted us to adopt a novel approach, committed to leveraging polarimetric images
while diverting attention to laser speckle patterns, rather than relying solely on the imaging
aspect. Our proposed optical setup for polarization-driven DLSA, depicted in Fig. 2, comprises
a coherent light source, a spatial filter (SF), a polarization state generator (PSG), a polarization
state analyzer (PSA), and an image sensor. Unwanted spatial frequencies of a diode laser (532
nm, 100 mW) are eliminated by the SF unit, with its pinhole positioned at the focal plane of
a collimating lens (L, focal length: 5 cm) to ensure uniform intensity across the illumination.
The expanded and collimated beam passes through the PSG, consisting of a linear polarizer
(LP) and a quarter-wave plate (QWP), to generate an arbitrary polarization state for irradiation.
Post-interaction with the sample, diffused light is analyzed through the PSA, which mirrors the
PSG’s optical configuration. A digital camera (DCC1545M, Thorlabs) with an 8-bit dynamic
range and a 5.2 µm pixel pitch is placed 10 cm from the sample plane. It captures polarimetric
images with a resolution of 1280 pixels by 1024 pixels, where each pixel represents an area of
230 nm by 230 nm.

Table 1. Procedure for collecting 36 polarimetric intensity images as successive speckle
data in polarization-driven DLSA. Rows and columns represent polarization states for
incident and scattered light, respectively: H: Horizontal, V: Vertical, P: +45◦ linear, M:
-45◦, R: Right circular, and L: Left circular polarizations.

PSA/PSG H V P M R L

H 𝐼𝐻𝐻 𝐼𝐻𝑉 𝐼𝐻𝑃 𝐼𝐻𝑀 𝐼𝐻𝑅 𝐼𝐻𝐿

V 𝐼𝑉𝐻 𝐼𝑉𝑉 𝐼𝑉𝑃 𝐼𝑉𝑀 𝐼𝑉𝑅 𝐼𝑉𝐿

P 𝐼𝑃𝐻 𝐼𝑃𝑉 𝐼𝑃𝑃 𝐼𝑃𝑀 𝐼𝑃𝑅 𝐼𝑃𝐿

M 𝐼𝑀𝐻 𝐼𝑀𝑉 𝐼𝑀𝑃 𝐼𝑀𝑀 𝐼𝑀𝑅 𝐼𝑀𝐿

R 𝐼𝑅𝐻 𝐼𝑅𝑉 𝐼𝑅𝑃 𝐼𝑅𝑀 𝐼𝑅𝑅 𝐼𝑅𝐿

L 𝐼𝐿𝐻 𝐼𝐿𝑉 𝐼𝐿𝑃 𝐼𝐿𝑀 𝐼𝐿𝑅 𝐼𝐿𝐿

We produce six polarization states for the incident light: horizontal linear (H), vertical linear
(V), 45◦ linear (P), -45◦ linear (M), left circular (L), and right circular (R). Each time, the same
six polarization states are applied to the scattered light in the PSA unit. Hence, 36 parametric
images (𝐼𝐻𝐻 , 𝐼𝐻𝑉 , 𝐼𝐻𝑃 , ..., 𝐼𝐿𝐿) of a sample are obtained sequentially by properly adjusting
the polarizers and retarders in the PSG and PSA units. The procedure is summarized in Table
1. The first and second indices denote the input and output states of polarization, respectively.
For example, the term HV indicates a horizontal state for the input and a vertical state for the
output polarizations. The alterations in the polarization-related properties of a specimen cause
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Fig. 2. Schematic of the optical setup for polarization-driven DLSA: SF - spatial filter,
MO - microscope objective, LP - linear polarizer, QWP - quarter-wave plate. Displayed
below the setup, as an example, are 36 parametric images representing speckle data
recorded from one of the samples (low-grade glioma) under investigation. These
sequence intensity images are produced by generating six polarization states for the
incident light: horizontal linear (H), vertical linear (V), 45◦ linear (P), -45◦ linear (M),
left circular (L), and right circular (R). Corresponding polarization states are used for
the scattered light, adjusted using the PSG and PSA units as shown in Table1. The first
and second indices indicate the input and output polarization states, respectively. For
instance, HV denotes horizontal input and vertical output polarization.
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variations in the speckle pattern observed in the recorded images. The entire imaging process for
each sample is completed in 10 minutes. We consider these intensity images as a sequence of
speckle pattern data. Collecting such data from a low-grade glioma sample is shown in Fig. 2 as
an example. The collected raw images are then subjected to DLSA. The reconstructed 16 Mueller
matrix images in the conventional approach may also be used for this purpose towards a robust
interpretation [57]. It is important to emphasize that in this context, ’dynamic’ refers to changes
in the speckle pattern across the sequence of polarimetric images resulting from variations in
the sample’s polarimetric responses during polarimetry. This differs from the conventional
association with temporal dynamics, as in this context, we focus on sequence-based variations
instead of time-varying data. We employ MATLAB (MathWorks, Inc., Natick, MA) to adapt
and apply a set of numerical and graphical statistical methods to the polarimetric images, which
primarily are customized for DLSA. This allows us to differentiate tissue types based on their
unique polarization-influenced speckle traits.

2.6. Numerical processing

When a laser beam illuminates a rough surface, it forms a random interference pattern called
laser speckle. DLSA is an optical technique that captures and analyzes time-based changes in the
speckle pattern. Changes within the sample, such as cellular activity or tissue growth, alter the
speckle pattern. These changes are recorded as a series of frames and tracked over time. A set of
numerical and graphical statistical methods is then applied to these frames for analysis [48, 53].
DLSA serves as an effective tool for investigating the characteristics of active materials, providing
valuable information about the sample’s activity, especially in the case of biomaterials. The
analysis of sample activity can reveal various phenomena related to the sample [35–37,58–60].

We synergize polarimetric imaging with dynamic laser speckle analysis to enhance the
differentiation of tissue samples. Unlike traditional temporal dynamics, this approach focuses
on sequence-based variations, analyzing changes in speckle patterns throughout a collection of
polarimetric images. These intensity images capture spatial fluctuations associated with the
sample’s polarimetric responses during the polarimetric experiment. Coherent light with different
polarization states interacts with the tissue samples through absorption, reflection, and scattering,
which are the initial causes of speckle pattern formation. The intensity and wavelength of the
laser remain stable throughout the process, ensuring that any detected activity in the speckle
patterns is attributed to internal features [28,29, 61,62]. We consider the images as a series of
speckle frames and apply various post-processing techniques to the consecutive images, primarily
customized for DLSA.

The Time History Speckle Pattern (THSP) creates a 2D matrix from the collection of speckle
images. A set of 𝑀 points or pixels is randomly selected in each pattern of the consecutive
images. These points are then arranged side by side to form a new 𝑀 × 𝑁 pixel matrix. In this
study, the rows (𝑀) represent the pixels, while the columns (𝑁) show their intensity changes
across the polarimetric images, with 𝑁 denoting the number of images. The THSP serves as
an indicator for any changes in the polarimetric responses within a sample during polarimetry,
which manifest as intensity variations in the horizontal direction. Higher intensity variations
in the THSP line correspond to samples with higher activity levels [38, 63–65]. The THSP
concept is commonly employed to derive numerical results such as the gray-level co-occurrence
matrix (GLCM), inertia moment (IM), and auto-correlation (AC). Additionally, certain statistical
parameters, such as contrast, homogeneity, and roughness, can be determined independently of
THSP.

The GLCM is an intermediary matrix used to evaluate the dispersion of consecutive pixels in
a THSP of 𝑀 points through 𝑁 speckle patterns. It is defined as:
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GLCM(𝑖, 𝑗) =
𝑀∑︁
𝑚=1

𝑁−1∑︁
𝑛=1

{
1, if THSP(𝑚, 𝑛) = 𝑖 and THSP(𝑚, 𝑛 + 1) = 𝑗

0, otherwise
(1)

This matrix represents a transition histogram of intensities. Thus, GLCM(𝑖, 𝑗) indicates the
number of times a transition from intensity level 𝑖 to 𝑗 occurs [50,53,66–70]. GLCM values may
be normalized to create what is often referred to as the modified GLCM. This normalization
enables the depiction of transition probability matrices between intensity values within the
(THSP) [34,71, 72]. The modified GLCM is used to find the probability mass function of the
regular difference of intensities between two neighboring pixels in a THSP. While high raw GLCM
values indicate frequent transitions between specific intensity levels, it is the normalized GLCM
values that provide a meaningful depiction of these probabilities, enriching the understanding
of the sample’s characteristics. In this context, 𝑖 and 𝑗 represent the intensities of neighboring
pixels. This normalization helps calculate the probability of an intensity jump from level 𝑖 to
𝑗 , such that 𝑃𝑟 (( 𝑗 − 𝑖) = 𝑤), where 𝑤 represents the intensity jump value from 𝑗 = 𝑖 + 𝑤, with
−255 ≤ 𝑤 ≤ 255 [53].

The AC function calculates the average correlation between the intensity of pixels in two
consecutive speckle patterns across the sequence of polarimetric images. For this, the THSP
matrix is used to calculate the AC curve [65, 73]:

AC(𝑖, 𝑗) = ⟨THSP(:, 𝑖),THSP(:, 𝑖 + 𝑗)⟩ (2)

There is a relationship between the speckle intensity AC and the mean square displacement
(⟨Δ𝑟2 (𝑖, 𝑗)⟩), which is crucial for determining the dissemination of statistical data in biological
samples. The AC function of THSP is directly related to the (⟨Δ𝑟2 (𝑖, 𝑗)⟩) of the scatterers
between the 𝑖 and the 𝑖 + 𝑗 polarimetric images. THSP(:,𝑖) and THSP(:,𝑖 + 𝑗) refer to the pixels
of THSP in the 𝑖 and the 𝑖 + 𝑗 images, respectively [73–76]:

AC(𝑖, 𝑗) = 𝑒−2𝑘𝛾
√

⟨Δ𝑟2 (𝑖, 𝑗 ) ⟩ (3)

The wave vector 𝑘 and parameter 𝛾, which depends on the polarization state of light, are used
to calculate the mean square displacements (MSD) of contributing scatterers of samples that
produce speckle patterns. To obtain MSD, curves are fitted to experimental data.

The randomness of the speckle pattern can be determined by examining its entropy, which
has been studied and generalized through the Shannon entropy (SE) concept. This method has
proven useful in the image correlation method for quality valuation of the speckle pattern. SE is
calculated by estimating the probability density function of the intensity of the speckle pattern,
which changes with the intensity distribution randomness. According to [77], the intensity
probability density function, 𝑝(𝐼), of a random intensity distribution can be written as:

𝑝(𝐼) = 4𝐼
⟨𝐼⟩ exp

−2𝐼
⟨𝐼⟩ (4)

⟨⟩ indicates the ensemble average of the variable. The intensity SE distribution can be derived
from the function of the intensity normalized probability density, described as 𝑁𝑝(𝐼) = ⟨𝐼⟩𝑝(𝐼),
and using [77]:

SE = −
∑︁
𝐼

𝑁𝑝(𝐼) log 𝑁𝑝(𝐼) (5)

where SE represents the intensity distribution with the summation taken over the intensity. It
is important to note that 𝐼 unequivocally represents the intensities of the images in the datapack
as a 3D matrix.
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The Average Difference (AD), also known as the Fujii method, may be used to show graphical
analysis outcomes [48, 53]. This method produces a result with a relative value, as shown in Eq.
6:

AD =
∑︁
𝑘

|𝐼𝑘 − 𝐼𝑘−1 |
𝐼𝑘 + 𝐼𝑘−1

(6)

where 𝐼𝑘 represents an image (intensity matrix) taken at instant 𝑘 . This method enhances
the differences in areas of the image that are dark, making the final image clearer than other
graphical methods.

The motion history image (MHI) is a valuable tool for analyzing the activity level of samples
by identifying movements over time within a series of images. MHI distinguishes between
static and dynamic patterns in pixel intensity, providing precise information about recent motion.
By examining the timestamps of pixels across an image sequence, MHI accurately tracks and
analyzes object movements, offering a comprehensive understanding of motion sequences. To
achieve this, intensity matrices are grouped into a 3D matrix known as a datapack, and the
dynamics of the object are revealed by subtracting sequential speckle patterns. This method
effectively determines an object’s movement [48, 53, 78]. To generate the MHI, we first calculate
the difference between consecutive frames to detect motion. This is done by deriving the 𝑆𝑙 (𝑖, 𝑗)
matrix for each of the 𝑁 speckle patterns (images) by subtracting it from the previous pattern:

𝑆𝑙 (𝑖, 𝑗) = 𝐼𝑙 (𝑖, 𝑗) − 𝐼𝑙−1 (𝑖, 𝑗) (7)

where 𝐼𝑙 (𝑖, 𝑗) and 𝐼𝑙−1 (𝑖, 𝑗) represent the intensity of pixel (𝑖, 𝑗) at moments 𝑙 and 𝑙 − 1,
respectively. Subsequently, these matrices are converted into binary patterns by applying a
suitable threshold to distinguish significant motion from noise:

𝑇𝑙 (𝑖, 𝑗) =
{

1, if |𝑆𝑙 (𝑖, 𝑗) | > 𝑆𝑇

0, if |𝑆𝑙 (𝑖, 𝑗) | ≤ 𝑆𝑇
(8)

where 𝑇𝑙 (𝑖, 𝑗) is the threshold image of 𝑆𝑙 at each moment 𝑙, and 𝑆𝑇 is the activity threshold
parameter (0 ≤ 𝑆𝑇 ≤ 255). This threshold helps to filter out small changes and noise, only
highlighting significant changes as motion. Therefore, MHI specifically considers pixel activity
with intensity levels above 𝑆𝑇 . Finally, the MHI matrix is generated from 𝑇𝑙 (𝑖, 𝑗) by:

MHI = 255
𝑁−1∑︁
𝑘=0

𝑇𝑙−𝑘 ℎ𝑘 (9)

where ℎ𝑘 is given by:

ℎ𝑘 =
𝑁 − 𝑘

𝑁 (𝑁 + 1)/2 (10)

It is important to note that the ℎ𝑘 value is a crucial weighting parameter that is solely based
on the age of the image. Therefore, it is essential to consider this value while determining the
relevance and importance of the image in any given context. Polarization-driven DLSA shifts the
focus from temporal changes to sequence-based variations and applies the adapted methods to
the collection of polarimetric images.

3. Results and Discussion

To show the effectiveness of the presented polarization-driven DLSA approach, we tested it
on patients with tumor lesions from different cell types that cannot be distinguished through
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radiological analysis alone. Figures 3(a)–3(e) show the THSP matrices of the five different types
of brain tumors under our study. These THSPs are formed by tracking the intensity values from
3000 randomly selected pixels in the collection of 36 polarimetric images of each sample. The
results show that significant differences in the speckle patterns can be observed among different
types of tumors, indicating variations in their polarization characteristics.

A deeper exploration of these polarimetric variations is facilitated through the computation of
the associated GLCMs for each sample. Figures 4(a)–4(e) show the 3D and 2D visualizations of
the GLCM derived from the THSP matrices, where the intensity levels 𝑖 and 𝑗 are denoted as
per Eq. (1). For a sensitive sample to different polarization states, the intensity values evolve
across the polarimetric measurement, the non-zero elements near the main diagonal increase, and
the matrix takes on a cloud-like appearance. Conversely, for a low-activity sample, the matrix
values are concentrated around the main diagonal. This dispersion indicates that departures
from the diagonal are more frequent and varied across samples, implying heterogeneity in their
polarization characteristics. For example, the higher dispersion in the low-grade glioma case in
Fig. 4(e) represents a higher polarization activity, as seen in the corresponding THSP of Fig.
3(e). The number of different intensity transitions observed in the GLCM varies among samples,
highlighting the unique way each sample responds to polarimetric changes.
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Fig. 3. Time History Speckle Pattern (THSP) formed by tracking 3000 random points
across the 36 polarimetric images (image datapack points) of (a) GBM, (b) ependymoma,
(c) meningioma, (d) medulloblastoma, (e) low-grade glioma. The grayscale intensity
represents the variation in polarization states across the image sequence, providing a
visual representation of the dynamic changes in speckle patterns. The differences in the
patterns indicate distinctions among the tissue samples.

The regular probability mass function of the polarimetric image collection for the samples is
shown in Fig. 5, illustrating the intensity jumps between pixels. These jumps are attributed to
fluctuations in speckle patterns due to variations in the polarization responses of each sample
to different polarization configurations. The probability mass function reveals the statistical
distribution of these intensity jumps, reflecting the heterogeneity in the polarization characteristics
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Fig. 4. 3D and 2D demonstration of the gray-level co-occurrence matrix (GLCM)
derived from the THSPs shown in Fig. 3 for (a) GBM, (b) ependymoma, (c) meningioma,
(d) medulloblastoma, and (e) low-grade glioma. The sensitivity of a sample to different
polarization states is reflected in the dispersion of the cloud-like pattern over the main
diagonal.

of the tissue samples. Notable observations from Fig. 5 include variations in the full width at
half maximum (FWHM) and kurtosis values among different tumor types. These parameters
characterize the speckle pattern distributions, indicating the polarization properties of the tissues.
For example, FWHM values denote the breadth of intensity jump distributions, while kurtosis
values indicate their peakedness. These metrics provide information about the scattering medium,
as the interaction of scatterers in the tissues during the polarimetric experiments reveals distinct
scattering behaviors.

The speckle intensity AC curve is obtained by measuring the correlation between pixel
intensities in the first image and subsequent images across the sequence of polarimetric images,
using the constructed THSPs. This approach emphasizes sequence-based intervals rather than
conventional time intervals. Figure 6 shows the AC variations as a function of the image sequence
step throughout the 36 polarimetric images for each of the samples. For each set of calculated AC
values, an exponential function is fitted according to Eq. (3). The fitted functions are depicted
by the corresponding color lines for the different evaluation samples, with the resulting fitting
parameters shown in the legend of Fig. 6. According to Eq. (3), a linear variation is expected
throughout the recorded successive polarimetric images for 2𝑘𝛾

√
𝑀𝑆𝐷. Since 𝛾 is a parameter

that depends on the polarization state of light, Fig. 6 can serve as an indicator of polarization
characteristics in different samples.

The SE curve is obtained by measuring the pixel intensities in the first image with subsequent
images across the sequence of polarimetric images, using the constructed THSPs. The mean
entropy value corresponding to each polarimetric image is determined by considering the entire
image set (datapack). Figure 7 shows the SE and standard deviation (STD) variations of tissue
samples. Different SE and STD values indicate different degrees of polarization (DoP) [77]. It
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Fig. 5. Regular probability mass function of the collection of polarimetric images
for different types of brain tumors: (a) GBM, (b) ependymoma, (c) meningioma, (d)
medulloblastoma, and (e) low-grade glioma. The graphs show the distribution of
intensity jumps between pixels ( 𝑗 − 𝑖 = 𝑤), with FWHM and kurtosis values indicated
for each tumor type, highlighting the statistical dispersion and heterogeneity in their
polarization responses.
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Fig. 6. Autocorrelation function (AC) of the polarimetric images for each of the samples.
Exponential functions fitted to the data are shown in the corresponding colors, with the
fitting parameters included in the legend.
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has been shown that the STD and SE of intensity increase with DoP, as a higher DoP leads to
greater contrast in the intensity distribution, resulting in higher STD and SE values [77]. The
observed variations in SE and STD can be explained by the fact that both parameters quantify
fluctuations in the intensity distribution. As demonstrated in [77], the SE increases quadratically
with the DoP, indicating a change in the randomness of the intensity distribution. Additionally,
the relationship between SE and STD is linear, as both metrics increase with the DoP due to the
enhanced contrast and randomness in the intensity distribution, highlighting that both metrics
effectively measure the intensity distribution’s fluctuation. These variations of SE and STD
as functions of DoP reveal valuable details about the polarization characteristics of the tissue
samples

GBM

SE

Meningioma

Medulloblastoma

Ependymoma

STD

-0.05 0.025 0.1 30.5 31.5 32.5

ba

Low-grade glioma

Fig. 7. (a) Shannon entropy (SE) and (b) standard deviation (STD) variations for
different types of brain tumors. These metrics show the differences in the degree
of polarization (DoP) and intensity fluctuations in the samples during polarimetric
measurement. Error bars indicate the variability within the data.

The Fujii method can be considered a technique to show the point-by-point effects of
speckle patterns of the laser beam on the sample and the local detection of tissue polarimetric
characteristics. This method computes the sum of the absolute intensity differences between
consecutive images by summing up the intensity differences between each pair in the collection of
consecutive images, as explained earlier in subsection 2.6. In an obtained Fujii map, the highest
pixel value signifies the most significant change at lower intensities. This method produces a
single image where the pixel value is determined by the difference in intensity at that specific
position. The highest pixel value represents the maximum change in intensity and is therefore
referred to as the maximum activity at that position. The activity map is obtained by summing
up the absolute value of all differences between consecutive images and then normalizing the
result with the sum of both images [48, 53]. This process can effectively provide an activity
map of the polarimetric images for all pixels. Fig. 8 compares Fujii 2D maps and associated
intensity histograms of the brain tumors, extracted from the 36 polarimetric images for each.
Pseudo-colors in the Fujii 2D maps indicate the sensitivity levels of each region within the
samples to changes in the polarization states during polarimetric measurement. For example, in
the provided maps, the sensitivity levels are color-coded in the Jet colormap, ranging from blue
for low sensitivity to red for high sensitivity.

Furthermore, we applied the MHI visualization technique to the set of polarimetric images
collected from each sample. Figure 9 presents a comparative analysis of the MHI for the five
different types of brain tumors. This innovative application of MHI allows us to track how each
polarization state impacts different regions in the sample during a polarimetric experiment, all
within a single map. As discussed, conventional methods may conflate the effects of various
polarization states, obscuring the contribution of individual states. In contrast, our adapted
MHI method assigns distinct color codes to these impacts, effectively visualizing which regions
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Fig. 8. Fujii 2D maps and associated intensity histograms for (a) GBM, (b) ependymoma,
(c) meningioma, (d) medulloblastoma, and (e) low-grade glioma, extracted from the
sequence of the polarimetric images for each of the samples. Each map’s dimensions
are 1280 pixels by 1024 pixels. The results, along with the computed FWHM of the
histograms and kurtosis values of the maps, help distinguish among the different tumor
types.

predominantly respond to specific types of polarization. For instance, within the Jet color map,
regions are tracked and color-coded from blue to red, where blue represents areas primarily
influenced by H polarization, and red highlights regions most responsive to L polarization.

We successfully tested our presented polarization-driven DLSA to differentiate various types of
brain neoplasms in H&E-stained slides. The results demonstrate that this approach could further
aid in the label-free diagnosis of tissues, providing accurate results comparable to conventional
immunostaining methods, which are often associated with uncertainties. Our method can
potentially be translated into the operating room to enhance the detection of white matter tracts
during neurosurgery and achieve maximal resection of tumoral tissues, thereby minimizing the
risk of recurrence and surgery-related morbidities. These preliminary results shed light on the
underlying histopathological and mechanical tissue property differences among diverse types
of brain neoplasms, aiding in distinguishing between diseased and healthy tissues [19,79,80].
As a prospect, small amounts of tissue could be analyzed intraoperatively using the presented
polarization-driven DLSA for optimal surgical margin resection. This method could also help
estimate the origin of tumoral cells and their histopathological nature as a label-free, real-time
method. It is particularly suitable for patients with tumors in eloquent areas or deep-seated
lesions where total tumor resection is not feasible. Building on previous evidence, laser speckle
analysis has long been used as a strategy to assess viscoelastic tissue properties and precisely
map pathological changes in tissues during carcinogenesis [76, 81]. However, we acknowledge
that this preliminary cohort study faced limitations regarding sample size and issues related to
pathological fixation (i.e., paraffin embedding), as previously reported [82]. We believe that this
preliminary work, if translated into the clinic, could enhance the diagnostic process, improve
surgical resection of tumoral tissues, and ultimately benefit patient outcomes.
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Fig. 9. The motion history image (MHI) for (a) GBM, (b) ependymoma, (c) meningioma,
(d) medulloblastoma, and (e) low-grade glioma, generated from the sequence of
polarimetric images. Each map has dimensions of 1280 pixels by 1024 pixels, with
each pixel representing an area of 230 nm by 230 nm. These images color-coded
the influence of distinct polarization states on specific regions in the samples during
polarimetry, highlighting the contrasts and similarities among the samples.

4. Conclusion

We synergized the benefits of conventional polarimetry with DLSA, introducing an efficient
optical approach to tissue analysis. We implemented the primary setup in transmission mode,
but it can be easily adapted to reflection mode, enhancing its potential applications in diverse
diagnostic settings. The simplicity, cost-effectiveness, non-invasivity, and rapid execution of this
technique render it a highly promising tool for oncological diagnostics. Our approach addresses
existing challenges in polarimetric imaging, such as image formation-related shortcomings and the
complexity in data interpretation due to mixed tissue polarization characteristics within Mueller
matrix elements and decomposition methods. The effectiveness of the proposed polarization-
driven DLSA approach was demonstrated by differentiating among various types of brain tumors.
Variations in polarimetric responses within the sample during polarimetric measurement cause
changes in the speckle patterns observed in the recorded sequence of polarimetric images. We
considered these intensity images as series of speckle frames, applying a variety of adapted
numerical and graphical statistical post-processing methods tailored for DLSA.

The results showed significant discriminations among the tissue samples, reflecting variations
in their polarization characteristics. The THSP method effectively represented sequence-based
fluctuations in polarimetric responses within a sample by tracking intensity changes across the
polarimetric images. GLCM quantitatively demonstrated the dispersion and transition frequencies
of intensity values, highlighting the heterogeneity in the samples’ polarization responses. The
regular probability mass function provided a meaningful depiction of the statistical distributions,
enriching the understanding of the polarization characteristics. The AC curves illustrated the
correlation between pixel intensities across the sequence of images, serving as indicators of

ACCEPTED ARTICLE PREVIEW 



polarization characteristics. SE and STD values indicated different DoP for different tissue
samples, with higher values corresponding to greater contrast and randomness in the intensity
distribution. Additionally, the Fujii method produced detailed activity maps that highlighted the
sensitivity levels of different regions within the samples to various polarization states. The MHI
offered a traceable visualization of the variations in polarimetric responses within a sample in a
single color-coded map, effectively distinguishing regions most affected by specific polarization
configurations during polarimetric measurement.

The encouraging outcomes of our research mark a significant step forward in the field of
medical diagnostics, opening new possibilities for non-invasive and efficient cancer tissue analysis.
Future research will build on this foundation, focusing on the medical aspects and detailed
clinical validation. Our goal is to broaden the scope of this methodology to encompass a larger
variety and number of samples, and to involve machine learning and artificial intelligence-based
classification, thereby expanding its application to more clinically oriented settings [83].
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