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Abstract
Optimizing laser processes is historically challenging, requiring extensive and costly experimentation. To solve this
issue, we apply Bayesian optimization for process parameter optimization to laser cutting, welding, and polishing.
We demonstrate how readily available Bayesian optimization frameworks enable efficient optimization of laser
processes with only modest expert knowledge. Case studies on laser cutting, welding, and polishing highlight
its adaptability to real-world manufacturing scenarios. Moreover, the examples emphasize that with suitable
cost functions and boundaries an acceptable optimization result can be achieved after a reasonable number of
experiments.
Keywords: Bayesian optimization, design of experiments, laser cutting, laser welding, laser polishing

Introduction
Lasers in the context of material processing are highly

versatile tools that allow for the execution of a wide range
of processes. Yet, determining optimal process parameters
for a specific task can be exceedingly challenging due to the
high-dimensional nature of the parameter space, commonly
referred to as the ”curse of dimensionality” [1].

To address this challenge, an increasing number of
machine learning algorithms are being employed [2–5].
One particular black box optimization method frequently
applied under noisy conditions, and when the parameters
to be optimized are typically fewer than 20, is Bayesian
optimization (BO) [6]. This method has also been used
in optimizing laser materials processing [7–13]. However,
these studies often narrow their focus to specific processes.

Therefore, this paper explores the broader question of
whether Bayesian optimization is applicable to real-world
problems, emphasizing its generic utility for laser process
developers in practical scenarios. We provide a concise
introduction to Bayesian optimization, including available
frameworks that simplify its use for laser process developers
in practice. Furthermore, we assess its practical applicabil-
ity in the contexts of laser cutting, laser polishing, and laser
welding. Our research shows that sophisticated optimization

frameworks, combined with modest expertise from process
developers, enable the identification of adequate process
parameters. This is achieved within just a few tens of
experimental iterations.

Nevertheless, we recognize that in addition to modest
process knowledge, a basic understanding of the underlying
mathematics is crucial for achieving optimal results.

Introduction to Bayesian optimization
In order to optimize a laser process, the first step involves

identifying the quality properties that need to be optimized.
Subsequently, a cost function denoted as 𝑓𝑐 is established
to quantitatively relate these properties. A smaller value
of 𝑓𝑐 indicates a higher quality process. Given that the
quality properties themselves are a function of the process
parameters 𝒙 ∈ 𝐴 originating form a parameter space 𝐴, 𝑓𝑐
is mathematically expressed as follows

𝑓𝑐 : 𝐴 → R; 𝒙 ↦→ 𝑓𝑐 (𝒙) (1)

The goal is to find the optimal parameter 𝒙opt, namely

𝒙opt := argmin
𝒙∈𝐴

𝑓𝑐 (𝒙) ⇔ 𝒙opt = argmax
𝒙∈𝐴

(− 𝑓𝑐 (𝒙))

(2)
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Table 1: Common kernels 𝑘 (𝒙, 𝒙′) [14]
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In an experimental context, such as optimizing laser
processes, the search for 𝒙opt is typically aided by conducting
experiments that yield a set of data points, denoted as

𝐷𝑛 := {(𝒙1, 𝑦1) , ..., (𝒙𝑛, 𝑦𝑛)}; 𝑛 ∈ N (3)

Each data point, labeled by 𝑗 = 1, ..., 𝑛, comprises an input
parameter 𝒙 𝑗 along with the measured 𝑦 𝑗 serving as an
potentially noisy observation for 𝑓𝑐

(
𝒙 𝑗

)
.

In the context of Bayesian optimization, the cost function
𝑓𝑐 is approximated by a surrogate model. A commonly
used surrogate model is a Gaussian process 𝑓𝑐 ∼ GP(𝑚, 𝑘),
which also captures uncertainties in the knowledge of 𝑓 . The
Gaussian process is defined by a mean function 𝑚 : 𝐴 → R
and a covariance function or kernel 𝑘 : 𝐴 × 𝐴 → R. In
general, a Gaussian process is a stochastic process {𝑋𝒙}𝒙∈𝐼
defined on an index set 𝐼 ⊆ 𝐴, which follows a multivariate
normal distribution N(𝝁,𝚺) when 𝐼 is restricted to a finite
subset of 𝐴

𝑿 :=
(
𝑋𝒙1 , . . . , 𝑋𝒙𝑛

)𝑇 ∼ N (𝝁,𝚺) ; 𝑛 = |𝐼 | (4)

Here, 𝑚(𝒙) and 𝑘 (𝒙, 𝒙′) define the mean vector 𝝁 and
covariance matrix 𝚺. When restricting 𝐼 = {𝒙1, ..., 𝒙𝑛}
to the already experimentally evaluated input parameters
described by Eq. 3, 𝝁 and 𝚺 are defined as follows

𝝁 := (𝑚(𝒙1), ..., 𝑚(𝒙𝑛)) ; (5)

𝚺 :=
©­­«
𝑘 (𝒙1, 𝒙1) + 𝜖2 ... 𝑘 (𝒙1, 𝒙𝑛)

...
. . .

...

𝑘 (𝒙𝑛, 𝒙1) ... 𝑘 (𝒙𝑛, 𝒙𝑛) + 𝜖2

ª®®¬ (6)

Table 1 provides an overview of common kernels, with the
hyperparameter 𝑙 and 𝛾 optimized for the data at hand, which
also applies to the estimated variance of the homoscedastic
noise 𝜖2.

Algorithm 1 Pseudocode for Bayesian optimization
Initialize a prior GP
Choose {𝒙1, ..., 𝒙𝑛0

} (𝑛0 ∈ N)
Determine 𝐷𝑛0

= {(𝒙1, 𝑦1), ..., (𝒙𝑛0
, 𝑦𝑛0

)}
Determine posterior GP using 𝐷𝑛0

for 𝑘 = (𝑛0 + 1), ..., 𝑁 do
𝒙𝑘 = argmax

𝒙∈𝐴
𝑢(𝒙)

Determine 𝐷𝑘 = (𝒙𝑘 , 𝑦𝑘)
Determine posterior GP using 𝐷𝑘

end for

The advantage of approximating 𝑓𝑐 by a probabilistic
surrogate model like a Gaussian process is, that one
can determine the posterior probability for 𝑓𝑐 given the
experimental data 𝐷𝑛 by

𝑃( 𝑓𝑐 |𝐷𝑛, 𝒙) = N(𝜇𝑛 (𝒙), 𝜎2
𝑛 (𝒙)), with (7)

𝜇𝑛 (𝒙) = 𝒌𝑇 · 𝚺−1 · 𝒚;
𝜎2
𝑛 (𝒙) = 𝑘 (𝒙, 𝒙) − 𝒌𝑇 · 𝚺−1 · 𝒌;

𝒌 = [𝑘 (𝒙, 𝒙1), ..., 𝑘 (𝒙, 𝒙𝑛)] ;
𝒚 = [𝑦1, ..., 𝑦𝑛]

The utilization of 𝑃( 𝑓𝑐 |𝐷𝑛, 𝒙) enables selecting a promising
next sampling point 𝒙𝑛+1. This involves combining
exploitation and exploration strategies. Exploitation em-
phasizes sampling where 𝑃( 𝑓𝑐 |𝐷𝑛, 𝒙) predicts values near
the expected optimum, while exploration targets uncertain
regions. To determine 𝒙𝑛+1, an acquisition function 𝑢𝑛 (𝒙)
is defined, yielding 𝒙𝑛+1 by

𝒙𝑛+1 := argmax
𝒙∈𝐴

𝑢𝑛 (𝒙) (8)

Table 2 summarizes common acquisition functions.
The pseudocode presented in Algorithm 1 outlines the

entire process of Bayesian optimization. Initially, 𝑛0 ∈ N
sample points are selected using Sobol sequence or a
comparable method [17]. Subsequently, the main procedure
involves selecting sample points and updating the Gaussian
process.

It’s worth mentioning that implementing the algorithm
from scratch is unnecessary due to the availability of
various frameworks and libraries that provide optimized
and efficient implementations. An overview of common
frameworks is provided in Tab. 3.

Throughout this study, we exclusively utilize the Ax
framework [19], and maintain default settings for both the
kernel and acquisition function. These defaults include
a squared exponential kernel and an expected improve-
ment acquisition function. Necessary hyperparameters
are adapted to the specific data at hand using maximum
likelihood estimation. Additionally, the initial 𝑛0 data
points, outlined by Algo. 1, were sampled using the Ax
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Table 2: Common acquisition functions

Acquisition function 𝑢𝑛 (𝒙) Equation

Expected
improvement [15]

EI(𝒙) =
{
[𝜇𝑛 (𝒙) − 𝑦+ − 𝜉]Φ(𝑍) + 𝜎𝑛 (𝒙)𝜙(𝑍), if 𝜎𝑛 (𝒙) > 0

0, else

𝑍 =

{
𝜇𝑛 (𝒙)−𝑦+−𝜉

𝜎𝑛 (𝒙) , if 𝜎𝑛 (𝒙) > 0

0, else

Here, 𝑦+ denotes the current optimum from sampled data, 𝜉 is a hyperparameter
controlling the amount of exploration. Furthermore, 𝜙 and Φ represent the standard
normal distribution’s probability density and cumulative distribution functions.

GP Upper Confi-
dence Bound [16]

GP-UCB(𝒙) = 𝜇𝑛 (𝒙) + 𝛽𝑛𝜎𝑛 (𝒙)

Here, 𝛽𝑛, a rising hyperparameter with iterations, drives exploration despite ample
samples.

implementation of Sobol’s sequence.

Genericity of Bayesian optimization
This study concentrates on optimizing processes where
conducting experiments is costly, emphasizing the search
for nearly optimal process parameters with minimal exper-
imental evaluations. To showcase Bayesian optimization’s
effectiveness in meeting these requirements, we conducted
a comparative examination of various and typical optimiza-
tion strategies using standard test functions. Specifically, we
assessed the full-factorial design of experiments [23], the
Nelder-Mead method [24], Latin hypercube sampling [25],
and Bayesian optimization. The chosen test functions are
the Rosenbrock function and the Hartmann-4D function
[26], both implemented in four dimensions, aligning with
the number parameters to be optimized in laser process
optimization investigated within this study.

The Rosenbrock function was optimized over the domain
𝒙 ∈ [−5, 10]4. Additionally, Gaussian noise with a standard
deviation of 0.5 was introduced to simulate noise in real-
world experimental conditions in process optimization.
Furthermore, we applied a shift of 𝜋 to all input variables
of the Rosenbrock function compared to its standard
definition. The optimization of the Hartmann-4D function
was conducted over the domain 𝒙 ∈ [0, 1]4, with Gaussian
noise also incorporated, having a standard deviation of 0.05.

For Bayesian optimization, an initial sampling with
five points was conducted. The full-factorial design of
experiments was assessed for two and three levels per
dimension. Latin hypercube sampling was executed with
centered values within the intervals. Each optimization
process was repeated ten times to assess uncertainty. The
results of the comparison are illustrated in Fig. 1. The

partially transparent uncertainty bands within Fig. 1 reflects
the range between the maximum and minimum values
attained across the ten optimization runs, with the data points
representing the mean.

In both the Hartmann-4D and Rosenbrock functions,
Bayesian optimization consistently identifies the smallest
value and achieves the fastest convergence to this optimal
point. Furthermore, Bayesian optimization yields minimal
uncertainty regarding the discovered optimum, underscor-
ing its generic applicability when seeking optima with a
limited number of function evaluations.

Results and Discussion
The upcoming section illustrates and discusses the

results obtained through Bayesian optimization applied to
laser cutting, polishing, and welding. It is important
to note that the expertise of laser process developers is
solely utilized in establishing an appropriate cost function
tailored to the particular process undergoing optimization.
The process parameters as well as quality measures of the
different laser processes are given in Tab. 4.

Laser welding
The goal in Bayesian optimization of deep penetration

laser welding was to quickly find process parameters that
result in a specified weld depth 𝑡𝑍 = 1.5 mm with minimal
amount of defects and high welding speed. Thus, the chosen
quality properties are the capillary depth 𝑡, the pore area
fraction 𝐴𝑃 , the number of transverse cracks𝐶𝑁 in the weld,
the maximum depth of transverse cracks 𝐶𝑡 , the presence of
undercuts 𝑈 ∈ {0, 1}, the height of the weld top seam ℎ𝑤 ,
and the welding speed 𝑣.
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Table 3: Common frameworks for Bayesian optimization

Name Programming language Comments

BoTorch [18] Python

PyTorch-based system with supported parallel optimization
(including GPUs), auto-differentiation, joint Gaussian
process and Neural Network training, and deep and/or
convolutional architectures.

Ax [19] Python
Built on BoTorch with higher-level APIs, user-friendly for
standard real-world use cases, but with some limitations in
full control.

GPyOpt [20] Python

Offers the advantage of enabling parallel optimization,
accommodating continuous, discrete, and categorical
variables, and supporting inequality constraints. However,
maintenance has concluded.

Statistics and
Machine Learn-
ing Toolbox [21]

MATLAB

MATLAB’s Statistics and Machine Learning Toolbox
includes a function called bayesopt, offering a user-friendly
solution for real-world problems, encompassing parallel
optimization, handling constraints, and accommodating
multi-input data types.

BayesOpt [22] C++
The library is implemented in C++, making it highly efficient,
portable, and adaptable, including interfaces for C, C++,
Python, Matlab, and Octave.

Table 4: Process parameters as well as quality measures of
the applied laser processes.

Parameter Explanation
𝐴𝑃 pore area fraction
𝐶𝑁 number of transverse cracks
𝐶𝑡 maximum depth of transverse cracks
𝜂𝑃 power fraction in core fiber
ℎ𝑤 height of weld top seam
ℎ𝑏 burr height
𝑛𝑃 number of laser pulses per burst
𝑛𝑠 number of scans
𝑃 laser power
𝑝𝑁2

nitrogen gas pressure
𝑅𝑧 surface roughness
𝑠 cutting success
𝑆𝑞 surface roughness
𝑡 capillary depth
𝑡𝑍 target capillary depth
𝑈 presence of undercuts
𝑣 welding speed/feed rate
𝑧 𝑓 focal distance
𝑧𝑁 distance between gas nozzle and sample

The process parameters that are varied are the laser
power 𝑃, the welding speed, the focal position 𝑧 𝑓 with
respect to the sample surface, and the power fraction 𝜂𝑝

in the core of the used BrightLine Weld fiber. Details of
the technical setup and the evaluation of the welds are found
in the methods section. The cost function is formulated to
balance the maintenance of welding depth and the attainment
of high welding speed as top priorities, while assigning
comparatively lower weight to seam defects. Altogether,
the employed cost function is designed as follows

𝑓𝑐 (𝒙) = 𝑤𝑡 |𝑡 (𝒙) − 𝑡𝑍 | + 𝑤𝑝𝐴𝑃 (𝒙) + 𝑤𝑛𝐶𝑁 (𝒙) (9)
+ 𝑤𝑐𝐶𝑡 (𝒙) + 𝑤𝑢𝑈 (𝒙) + 𝑤ℎℎ𝑤 (𝒙)

+ 1

2
arctan (𝑤𝑣 (𝑣ref − 𝑣(𝒙)))

𝒙 =
(
𝑃, 𝑣, 𝑧 𝑓 , 𝜂𝑝

)
𝑤𝑡 = 2 mm-1 𝑤𝑝 = 6.67 𝑤𝑛 = 0.083

𝑤𝑐 = 0.63 mm-1 𝑤𝑢 = 0.16 𝑤ℎ = 0.25 mm-1

𝑤𝑣 = 0.25 min/m 𝑣ref = 25 m/min

Figure 2 depicts the evaluated properties as well as the
achieved values of the cost function during optimization.
Initially, Sobol sequence parameters led to high cost function
values due to improper process parameters causing heat
conduction welding, indicated by small values of 𝑡. As
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optimum

Fig. 1. Comparing various optimization techniques on two test functions, namely the Hartmann 4D and Rosenbrock
functions. The optimization process is iterated ten times, and the displayed results represent the mean. The partially
transparent uncertainty bands indicate the range between the maximum and minimum values obtained from the ten
optimization runs. For the Hartmann 4D function, the optimal value is approximately -3.14, while for the Rosenbrock
function, the optimum is at 0.

the Bayesian optimization starts from the ninth experiment
the value of the cost function is clearly decreasing. The
optimizer recognizes the necessary correlations of the
process parameters to achieve the required capillary depth,
approaching 𝑡𝑍 with ongoing optimization. Additionally,
ℎ𝑤 decreases as the optimization proceeds. Internal defects
are not a major problem throughout the optimization.
From the chosen process parameters, a clear preference
for relatively high feed rates is visible. The optimizer
recognizes that this requires a high laser power to achieve
the desired capillary depth. The best result for 𝑛 = 24 was
achieved with 𝑃 = 8 kW, 𝑣 = 30.7 m/min, 𝑧 𝑓 = 0.56 mm,
and 𝜂𝑝 = 0.49. No internal defects were visible and a
capillary depth of 𝑡 = 1.54 mm was achieved. However, the
weld seam shows clear undercuts, which were not critical in
this application.

Laser polishing
For the laser polishing experiments, an ultrashort pulse
laser was used in GHz burst mode to investigate the
achievable reduction in roughness by laser polishing of
1.4301 stainless steel material starting from different initial
surface conditions. The goal was for every initial roughness
to find the polishing parameters that yield the lowest
roughness after polishing. During optimization, we varied
the average laser power 𝑃, the number of laser pulses
per burst 𝑛𝑝 , and the number of scans 𝑛𝑠 . Additional

experimental parameters and detailed technical information
about the laser system is provided in the methods section.

The evaluation focused solely on the resulting surface
roughness 𝑆𝑞,𝑟 , simplifying the formulation of the cost
function as follows

𝑓𝑐 (𝑃, 𝑛𝑝 , 𝑛𝑠) = 𝑤𝑞𝑆𝑞,𝑟 (𝑃, 𝑛𝑝 , 𝑛𝑠); 𝑤𝑞 = 1 µm−1 (10)

Furthermore, we conducted an optimization run for vari-
ous initial roughness values 𝑆𝑞,𝑖 ranging from 𝑆𝑞,𝑖 = 8.7 µm
to 𝑆𝑞,𝑖 = 77 µm. Details regarding the generation of 𝑆𝑞,𝑖 are
provided in the methods section. To manage this extensive
set of experiments, we limited the experimental iterations
for a specific 𝑆𝑞,𝑖 to 𝑁 = 15, with the first six iterations
being part of the Sobol sequence.

Figure 3 exemplary depicts the optimization processes
for 𝑆𝑞,𝑖 = 50 µm, indicating a plateau reached after
𝑛 ≥ 10 experimental iterations. A comparable behavior was
observed for other investigated 𝑆𝑞,𝑖 values.

Figure 4 compares the results of the best laser polishing
processes obtained from Bayesian optimization for different
𝑆𝑞,𝑖 values. Remarkably, the polishing process achieved a
reduction in surface roughness between 67% and 90% for
all 𝑆𝑞,𝑖 .

The scanning electron microscope (SEM) images of the
surfaces depict the initial rough surface and the polished
areas. Adequate polishing results are achieved with no
remnants of the initial surface structure visible up to an
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Fig. 2. Welding results. Evolution of process parameters, measured properties of the weld seam and value of the cost
function during optimization of deep penetration laser welding.

𝑆𝑞,𝑖 ≈ 40 µm. For 𝑆𝑞,𝑖 > 40 µm, melt formation is still
present and the initial spikes are smoothed, but dimples and
portions of the initial surface structure remain on the surface.
Consequently, the minimal achievable roughness increases
with 𝑆𝑞,𝑖 > 40 µm.

The allowable process time for polishing was in this
study limited by setting the upper search space boundary
for the number of scans 𝑛𝑠,𝑚𝑎𝑥 = 20, see methods section.
However, the progress of the BO experiments suggests that
this boundary is a limiting factor for the achievable result
𝑆𝑞,𝑟 beyond 𝑆𝑞,𝑖 > 40 µm with the given setup.

Another finding is, that the resulting optimal peak
fluence per burst pulse for all seven BO experiments ranges
from 1.8 J/cm² to 3.8 J/cm². This is well above the ablation
threshold of 0.075 J/cm² [27], and three orders of magnitude
above the fluence per burst pulse of 2 mJ/cm² used for
polishing 1.4301 material in Ref. 28. The presence of a
particle seam surrounding the polishing areas supports the
assumption, that the optimized parameters do not lead to
conventional melting-based polishing processes. Instead,
ablative material removal appears to be partially harnessed
to achieve effective roughness reduction within specified
constraints.

Laser cutting
The effectiveness of Bayesian optimization was assessed

for laser cutting of 5 mm stainless steel sheets. Detailed
experimental procedures can be found in the methods
section.

The varied process parameters encompassed the laser
power 𝑃, feed rate 𝑣, nitrogen gas pressure 𝑝𝑁2

, distance of
the gas nozzle to the sample’s top surface 𝑧𝑛, and the focal
distance with respect to the gas nozzle position 𝑧 𝑓 . The
methods section outlines the permissible range of technical
variations for these parameters.

The considered quality properties encompass the cutting
success 𝑠 ∈ {0, 1}, where 𝑠 = 1 signifies a successful cut. In
the case of a successful cut, the other quality factors are
the burr height ℎ𝑏, feed rate 𝑣, and the roughness 𝑅𝑧 . The
methods section summarizes the methods for determining
these quantities.

In defining the cost function, our primary focus is on
ensuring cutting success, with burr height taking precedence
over roughness and feed rate, which are considered nearly
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Fig. 3. Progress of the laser polishing iterations
exemplary shown for the experiments with an initial
roughness 𝑆𝑞,𝑖 = 50 µm.

equal, resulting in

𝑓𝑐 (𝒙) =
{
5 × 103; 𝑠 = 0

𝑤ℎℎ𝑏 (𝒙) − 𝑤𝑣𝑣(𝒙) + 𝑤𝑟𝑅𝑧 (𝒙); 𝑠 = 1
(11)

𝒙 = (𝑃, 𝑣, 𝑝𝑁2
, 𝑧𝑛, 𝑧 𝑓 )

𝑤ℎ = 50 mm−1; 𝑤𝑣 = 5 × 10−4 min/mm;

𝑤𝑟 = 10 mm−1

Cutting success is highest prioritized by introducing a
penalty of 5 × 103 to 𝑓𝑐 when the cut fails. The weights
signify prioritization of burr height over feed rate and rough-
ness, under the expected conditions where ℎ𝑏 ∈ [0, 5 mm],
𝑣 ∈ [0, 5 × 103 mm/m], and 𝑅𝑧 ∈ [0, 0.5 mm]

The results of the optimization process are depicted
in Fig. 5. The minimum of the cost function was
achieved after 𝑛 = 31 iterations, resulting in ℎ𝑏 = 0.04 mm,
𝑣 = 1351 mm/min, and 𝑅𝑧 = 0.37 mm. The initial ten
iterations were part of the Sobol sequence. Beyond 𝑛 = 31,
the optimization entered a plateau, leading to termination
after 𝑁 = 103 iterations.

A comparison of the weighted cost defining properties
𝑤ℎℎ𝑏, 𝑤𝑣𝑣, and 𝑤𝑟𝑅𝑧 in Fig. 6 reveals that the optimization
is primarily influenced by ℎ𝑏, aligned with the prioritization
expressed by 𝑓𝑐. The optimization process effectively re-
duces ℎ𝑏, besides some peaks due to exploration. However,
it appears that the weights assigned to 𝑣 and 𝑅𝑧 may be
relatively low, causing these variables to exhibit minimal
impact. Moreover, the minor emphasis on 𝑣 results in lower

values when compared to those reported in the literature
[29].

Furthermore, the definition of 𝑓𝑐 in Eq. 11 exhibits
unsteady behavior concerning 𝑠. Utilizing the Ax default
squared exponential kernel for the optimization might be
inconvenient, as it is best suited for approximating smooth
and steady functions [14]. In such cases, Matérn kernels
could be a more suitable choice [14]. Alternatively, instead
of using 𝑠, one could consider employing a continuous
property, such as cut depth, which must precisely match
the sample thickness.

Conclusion and Outlook
In conclusion, this study demonstrates the practical

application of Bayesian optimization in optimizing various
laser processes such as welding, polishing, and cutting.
Our findings emphasize the readiness of this optimization
technique for adoption by laser process developers in real-
world scenarios. Utilizing the user-friendly Ax framework,
our experiments showcased the potential of optimizing laser
processes with only a few tens of experimental iterations.
However, it is crucial to highlight the significance of expert
knowledge in formulating accurate cost functions related to
laser processes. Additionally, a basic understanding of the
underlying mathematical aspects of Bayesian optimization,
including the selection of appropriate kernels, is essential
for satisfactory results.

In the case of laser welding the Bayesian optimizer
allowed to quickly find process parameters that resulted in a
weld with the desired seam depth and no internal defects
without requiring prior knowledge. These parameters
correspond to those recommended by experts. The
optimization could be carried out in less than five hours
and is therefore economically attractive. The fast analysis
of the samples and updating the model after each experiment
significantly reduces the required time.

In the context of laser polishing, we have successfully
identified effective polishing processes for surfaces with
high initial roughness values ranging from 𝑆𝑞,𝑖 = 8.7 µm
to 𝑆𝑞,𝑖 ≈ 40 µm. For all 𝑆𝑞,𝑖 the optimization found a
polishing process that improves the roughness by more than
67 %. Notably, this was achieved through a remarkably low
number of only 15 experimental iterations. Furthermore,
the optimization outcome is not a pure melt-based polishing
process, which is in contrast to the commonly reported GHz
polishing methods [28]. It is reasonable to assume that
such a conventional polishing approach would not have been
successful on the highly rough surfaces tested in our study.

In laser cutting, we conducted an optimization process
that prioritized cutting success, burr height, feed rate, and
roughness, in that order. After conducting 31 experiments,
we determined the best process based on a cost function
that reflected this prioritization. In case of cutting success,
the optimization was primarily influenced by burr height,
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aligning with our prioritization criteria. However, it appears
that the weight assigned to the feed rate was potentially too
low. Consequently, the optimized process is notably slower
compared to the extreme feed rates reported in the literature.

Methods
In this section the detailed experimental setups and eval-
uation methods are described for the three investigated
processes of laser welding, polishing and cutting.
Laser welding
A solid state cw laser with a wavelength of 𝜆 = 1030 nm and
a maximum power of 𝑃 = 8 kW in combination with a multi
core BrightLine Weld fiber from TRUMPF was used for the
welding experiments. The focal length of the collimating
lens was 200 mm while the focal length of the focusing
lens was 280 mm. With core and ring fiber diameters of
100 µm and 400 µm the beam waist diameter is 140 µm and
560 µm, respectively. Bead-on-plate welding of 80 mm long
welds was performed on 4 mm thick samples of AA5754
aluminum. The experiments were conducted inside a high-
speed X-ray diagnostics system to be able to investigate the
capillary and internal defects within the weld seam. The
X-ray system has been described in literature in detail [30].
The welding process was recorded at a frame rate of 500 Hz
with an acceleration voltage of the X-ray tube of 50 kV and
a tube power of 75 W.

For the welding experiments it was of interest to find
process parameters that result in a specified weld depth with
minimal defects and high welding speed. The weld depth
directly determines the joining area and thus the mechanical
strength, but can only be determined by metallographic

sections. To perform the evaluation promptly after the
welding process, the capillary depth 𝑡 is determined instead.
Previous studies have shown the correlation between the
depth of the capillary and the resulting depth of the weld
seam in case of deep penetration laser welding [31, 32]. To
determine the capillary depth the X-ray images of the sample
captured during the welding process were averaged. The
depth of the capillary was measured using a fixed threshold
of the grayscale values.

Welding, particularly in aluminum alloys, is prone
to internal defects like pores and cracks, which can
significantly comprise weld quality [33]. In order to quickly
examine the internal defects, the welded samples were again
analyzed with the X-ray tube after the welding process.
Since the defects have already solidified, they are visible
in multiple images. As a result, it is possible to overlay and
average the images to reduce noise. Through this averaging
both pores and transversal cracks are visible in the images,
compare Fig. 7a. By binarizing the image with a fixed
threshold value, the pores and cracks can be distinguished
from the surrounding bulk material. The circularity of the
detected objects allows further differentiation between pores
and transverse cracks, as can be seen in Fig. 7b as red and
blue marks. Compared to the test weld in Fig. 7a, no internal
defects can be seen in the X-ray image for the optimum
parameters from Fig. 2.

To quantify the defects a 50 mm long area was selected
in the superimposed X-ray image, excluding the start and
end of the weld. The depth of the area was set to the
capillary depth. The share of the pore area inside this area
can be used to quantify the amount of pores and is referred
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Fig. 5. Cutting results. Process parameters and cost function for laser cutting.

to as the pore area fraction 𝐴𝑃 . Transverse cracks were
characterized by their number 𝐶𝑁 within the weld seam
and the maximum depth 𝐶𝑡 of the deepest crack. To detect
humping the maximum height ℎ𝑤 of the weld top bead was
measured with a caliper gauge, excluding the start of the
weld and the end crater.

To prevent the optimizer from suggesting inappropriate
process parameters, the possible range was limited for each
parameter. Therefore, the welding speed 𝑣 was limited to
a range between 3 and 50 m/min and the focal distance
to 𝑧 𝑓 = ±5 mm. The lower limit of the laser power 𝑃 was
restricted to values above 1 kW to facilitate deep penetration
welding. The upper limit was limited to a speed-dependent
value for welding speeds below 10 m/min to prevent damage
to the setup. For higher welding speeds the laser power is
limited by the available maximum power of 8 kW of the laser.

Laser polishing
For laser polishing, an ultrashort pulse laser was used in
GHz burst mode. The goal was to investigate the achievable
reduction in roughness on different initial surface conditions
on 1.4301 stainless steel material. The initial roughness
was produced in preparation with laser ablation processes
without bursts using high peak fluences from 5.6 J/cm² to
29 J/cm², which yield roughness values 𝑆𝑞,𝑖 ranging from
8.7 µm to 77 µm.

The polishing laser Carbide CB3-80 (Light Conversion,

Lithuania) operated at 𝜆 = 1030 nm. The beam was circular
polarized, configured for 190 fs pulse duration at a pulse
repetition rate of 50 kHz and focused to a spot on the surface
of 50 µm. For beam steering a 2d galvanometer scanner was
used with an f-theta lens of 163 mm focal length. The feed
was constant at 500 mm/s with a 10 µm hatching distance.
The variable parameters for optimization were average laser
power between 0.15 W and 18.6 W, the number of pulses
per burst packet from 1 to 10 with a delay of 440 ps and the
number of scans from 1 to 20.

There are multiple metrics to quantify the surface
roughness of a specimen, which can be separated into
profile and areal measurements. In this case the common
areal roughness value Sq in µm provided a direct cost
value, see Eq. 10. It was measured using an inline coaxial
optical coherence tomography sensor Chrocodile2 (Precitec
Optronik GmbH, Germany) [34]. A best fit tilted plane
was subtracted from the raw topography. By focusing
through the same optics the OCT’s minimum focus diameter
is limited and the measured roughness values have to
be interpreted mainly qualitatively. However, the OCT
technology has the advantage of being fully integratable into
the ablation systems to measure the process result without
movement of the sample or change of the processing head.
This saves time and labor and enables a complete automation
of such optimization tasks.
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Laser cutting
For laser cutting a solid state cw laser with a wavelength

of 𝜆 = 1030 nm and an adjustable maximum power of
𝑃 = 8 kW with a transport fiber with a core diameter of
100 µm was used. The laser beam was focused to the work
piece with a Pro Cutter 2 cutting head from Precitec with a
collimating lens with 100 mm focal length while the focal
length of the focusing lens was 150 mm, leading to a focus
diameter of about 150 µm. The cutting nozzle had a nozzle
diameter of 3 mm. As cutting gas Nitrogen with purity level
5.0 was used. For the optimization these parameters were
constant. Varied process parameters were the average power
of the laser between 3 kW to 8 kW, the gas pressure 𝑝𝑁2

between 3 bar to 18 bar, the feed rate 𝑣 between 0.5 m/min to
8 m/min, the focal position between -16 mm to 10 mm. The
nozzle distance to the surface was varied between 0.5 mm
to 5 mm. The material used was 5 mm thick stainless steel
1.4301. The target parameters for the optimization were
the roughness 𝑅𝑧 , feed rate 𝑣 and the maximum burr heigth
ℎ𝑏. Therefore, a cut was made over a length of 60 mm per
experiment. For the evaluation of the cut quality, the cut
edge was measured in the range from 20 mm after the start
of the cut to a length of 40 mm with a surfacecCONTROL
3D 3500 sensor to determine the roughness 𝑅𝑧 according to
the ISO 25178 standard and the burr height ℎ𝑏.
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