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Abstract
Over the last decades, ultrafast laser processing has become a widely used tool for manufacturing of micro- and
nanostructure. Real time monitoring of laser material processing opens opportunities to inspect the process and
provide feedback. To date, in-situ and real-time monitoring of laser material processing is rarely performed.
Towards this end, in this paper, we propose a dual-path snapshot compressive microscopy (DP-SCM) for high-
speed, large field-of-view and high-resolution imaging for in-situ and real-time ultrafast laser processing. In the
evaluation of DP-SCM, the field-of-view, lateral resolution and imaging speed are measured to be 2 mm, 775 nm
and 500 fps respectively. In ultrafast laser processing, the laser scanning process is observed by DP-SCM system
when translating the sample stage and scanning the focused femtosecond laser respectively. Finally, we have
monitored the development of self-organized nano-gratings structure, validating our system’s potential to unveil
new material mechanisms. The proposed method serves as an add-up (plug-and-play) module to any imaging
setup and has vast potential in opening up new avenues for high-throughput imaging in laser material processing.
Keywords: Snapshot compressive imaging, Femtosecond laser processing, Laser-induced self-organization

Introduction
Processing of materials by ultrafast pulsed laser has

opened opportunities in modern microfabrication and pro-
duction. The advancement in generating ultrashort laser
pulses, spanning from femtoseconds (fs) to a few pi-
coseconds (ps) in duration, has facilitated the commercial
availability of ultrafast laser systems at a reasonable cost.
As a result, this development has empowered numerous
researchers to conduct comprehensive investigations into
interactions between light and matter under extremely high
irradiance conditions [1, 2, 3, 4, 5, 6, 7, 8]. For example,

in transparent substrate, the interaction with short, intense
laser pulses can lead to nonlinear absorption phenomena,
such as ‘multiphoton’ absorption [9], during which the laser
radiation is locally absorbed. In the case of fused silica, a
localised increase of density may appear, which is useful for
inscribing direct-write waveguide [10, 11] and triggering
self-organised nanostructures [12, 13, 14, 15].

The quality of components produced through ultrafast
laser manufacturing is greatly affected by the production
process parameters. For example, the typical threshold
for generating strong thermal accumulation may depend
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on parameters like the laser pulse energy, pulse duration,
scan speed, and material properties. Extensive tuning of
the laser-parameter is thereby required for a single material.
As a result, sensors and measurement systems are readily
accessible for monitoring the energy source and materials.
Commonly used techniques include X-ray tomography [16],
laser scanning confocal microscopy [17], scanning electron
microscopy [18] and optical coherence tomography [19].
However, most of these approaches are carried out in an
ex-situ manner, that is, an iterative optimization of a set of
parameters is performed on the finished structures. Such
operation requires time-consuming analysis and significant
production cost.

In general, in-situ and real-time monitoring of ultrafast
laser material processing is of great importance to the
manufacturing field. There are several instances of this
in the literature [20, 21, 22, 23]. An in-situ monitoring
method commonly used in the context of ultrafast laser
manufacturing is wide-field optical microscopy [20]. This
approach involves capturing two-dimensional snapshots of
light scattering, revealing the transient refractive-index
distribution arising from different sample regions. Another
in-situ method is optical coherence tomography [21, 22],
which allows for assessing the quality and properties of 3D
microstructures in real-time scenario. Apart from the above
methods, broadband coherent anti-Stokes Raman scattering
(CARS) microscopy is shown to be an in-situ and real-
time tool for observing the microscopic characterization
of structures fabricated by two-photon polymerization [23].
However, these microscopic approaches are comparatively
slow in imaging speed. This limitation arises from the fact
that imaging speed is primarily determined by camera frame
rate and data bandwidth. In certain dynamic scenarios where
the laser-material interaction happens at much higher speed
(over 500fps), high-speed imaging and big data storage are
of paramount importance. Furthermore, considering spatial
bandwidth, achieving a comprehensive and detailed analysis
requires an innovative optical configuration characterized by
a wide field-of-view (FOV) and high resolution. In general,
high-throughput data does not meet the demands for real-
time imaging. Hence conventional microscopic imaging is
not suitable for routine on-the-fly in-process monitoring.

An optimal in-situ and real-time imaging method
should meet four key criteria: large FOV, high resolution,
fast imaging speed and low data bandwidth. However,
traditional microscopy techniques have limited functionality
when it comes to capturing high-resolution images of
large areas quickly. There are several ways to increase
FOV and resolution simultaneously. Direct ways involve
using objective lens with high numerical aperture or
increasing sensor size [24, 25]. Both methods require
expensive hardware, leading to increased costs. Another
approach is using computational techniques such as Fourier
Ptychography [26, 27]. This method involves acquiring

a series of low-resolution images and computationally
merging them to produce a high-resolution image. This
process is time-consuming and fails to reconstruct high-
speed scenes. Instead of employing the methods mentioned
above, we opt for a straightforward bipath approach to
distinguish between the high-resolution and wide FOV
paths. This approach consists of two parallel optical paths:
one is optimized for high-resolution imaging, while the other
is designed for wide-field imaging.

A promising approach for addressing the limited imag-
ing speed and data storage is snapshot compressive imaging
[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38], which
combines hardware encoder and software decoder to enable
high-speed imaging in a snapshot. This technique uses
temporally varying masks to modulate scenes and a regular
CCD/CMOS camera for detection. Compressed ultrafast
photography (CUP) follows a similar principle to snapshot
compressive imaging but distinguishes itself by employing
temporally sheared masks for modulation and a streak
camera for scene capture [39, 40, 41, 42, 43, 44, 45].
Leveraging the streak camera’s ultrafast electronic response,
CUP stands out as the world’s fastest camera, capable of
capturing transient dynamic events at a staggering speed
of 100 billion frames per second. This breakthrough
has enabled applications such as measuring the speed of
light [39] and fluorescence lifetime imaging [41]. However,
the streak camera is significantly costlier, approximately
100 times more expensive than CCD/CMOS alternatives.
This substantial price difference restricts its practical use
among ordinary researchers. Employing a chirped pulse
for illumination can eliminate the necessity of a streak
camera to capture ultrafast processes [45]. Nevertheless,
it is challenging to image self-illuminating processes such
as fluorescence processes. Hence, in this paper we turn
to a more practical and low-cost solution – snapshot
compressive imaging. By harnessing advanced deep
learning reconstruction algorithms [32, 33, 34, 36, 35,
37, 38], we can decode the high-speed scene from a
snapshot measurement, hence lowing the data storage while
increasing the imaging speed simultaneously.

In this paper, we demonstrated, for the first time, in-
situ and real-time monitoring of ultrafast laser material
processing using snapshot compressive microscopy. Specif-
ically, to mitigate the inherent trade-off between spatial
resolution, FOV and imaging speed, we propose a dual-
path snapshot compressive microscopy (DP-SCM) for laser
material processing. DP-SCM consists of two parallel
optical paths, one optimized for high-resolution imaging and
the other for wide-field imaging. By combining these dual
measurements, DP-SCM can reconstruct high-resolution
images over a large FOV at high imaging speed. In the
Principle section, we describe the fundamental principle
and derive the mathematical formulation of snapshot com-
pressive imaging. In the Results and Discussion section,
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the experimental setup was shown. We then validated its
capability in terms of FOV, lateral resolution, imaging speed
and reconstruction algorithm using a high-resolution target.
Furthermore, to verify the feasibility of DP-SCM for in-situ
and real-time monitoring in femtosecond laser processing,
we observed the laser scanning process when translating the
sample stage and rotating the scanning mirror respectively.
Lastly, we investigated the growth of self-organized periodic
structure using our DP-SCM system. When a high-speed
camera is running at 1000fps, we have closely monitored
the development of nano-gratings, validating our system’s
potential to unveil new material mechanisms due to its
discoveries.
Principle
Fig. 1 depicts the sensing process of snapshot compressive
imaging, which can be divided into optical encoding,
compressive measurement and reconstruction. The high-
speed dynamic scene, modelled as a time-series of two-
dimensional images, is firstly collected by the objective
lens and relayed to the digital micromirror device (DMD)
or shifting mask, known as the optical encoder. The
optical encoder imposes spatially-varying binary mask at
each timestamp to encode the high-speed scenes. The
modulated scene is then relayed onto the camera. To
capture the dynamic scenes in a single shot of the camera,
multiple variant masks are displayed on the optical encoder
within the camera exposure. A snapshot on the camera
integrates tens of temporal frames of the high-speed scene,
forming a compressive measurement. Lastly, by feeding the
compressive measurement and pre-measured masks into the
iterative algorithms or deep neural networks, the high-speed
scene can be well reconstructed.

We now formulate the forward imaging model of
snapshot temporal compressive imaging system. Let
(𝑥, 𝑦, 𝑡) denotes the spatial-temporal coordinate system of a
dynamic scene O(𝑥, 𝑦, 𝑡). We define the temporal varying
masks to be represented as C(𝑥, 𝑦, 𝑡). The compressed
measurement is modelled as the temporal integration of the
product between the corresponding masks and scene,

𝐼 (𝑥′, 𝑦′) =
∫ 𝑇

𝑡=0

𝑂 (𝑥, 𝑦, 𝑡) • 𝐶 (𝑥, 𝑦, 𝑡)𝑑𝑡 (1)

where 𝐼 (𝑥′, 𝑦′) is the continuous representation of the
compressed measurement over an exposure time 𝑇 .

In discretized form, considering 𝐵 discrete time slots,
𝐵 high-speed frames {X𝑘}𝐵𝑘=1 ∈ R𝑛𝑥×𝑛𝑦 are modulated
by the coding masks {M𝑘}𝐵𝑘=1 ∈ R𝑛𝑥×𝑛𝑦 . The discretized
measurement is thus given by,

Y =

𝐵∑︁
𝑘=1

X𝑘 ⊙ M𝑘 +G (2)

where ⊙ denotes the element-wise product. G ∈ R𝑛𝑥×𝑛𝑦

represents the measurement noise. We then vectorize the

sensing process. Define

x =
[
xT1 , ..., x

T
𝐵

]T (3)

where x𝑘 = vec(𝑋𝑘) represents the vectorized formulation
of the 𝑘-th frame by stacking the columns. Let

Φ = [D1, ...,D𝐵] (4)

where D𝑘 = 𝐷𝑖𝑎𝑔(vec(M𝑘)) represents the diagonal
formulation of M𝑘 of the 𝑘-th frame, where each diagonal
element corresponds to the value in its vectorized form. By
reshaping the Eq. (2) using x and Φ, we obtain the sensing
process in its vectorized formulation,

y = Φx + g (5)

where y = vec(Y) and g = vec(G). This formulation
resembles the concept of compressed sensing, but it involves
a unique structure in the sensing matrix Φ. We aim to
recover x given the measurement y and mask Φ. This is a
typical ill-posed inverse problem, which can be solved by
the optimization-based or deep-learning based methods. In
the optimization-based methods, an additional term R(x) is
introduced as a regularization term, which serves as prior
information used to constrain the solution. To be more
specific, we can represent the reconstruction process as the
following optimization task,

x̂ = argmin
x

| |y −Φx| |22 + 𝜏R(x) (6)

where 𝜏 is a parameter to balance the data fidelity term
| |y − Φx| |22 and the regularization term R(x). To solve the
ill-posed problem, various iterative algorithms have been
proposed [35, 36]. Another solution to Eq. (5) is to learn
the inverse modeling between the measurement y and the
desired signal x through deep neural network [32, 33, 34,
37]. Formally, deep-learning based algorithm minimizes the
following problem through gradient descent (such as Adam
optimizer [46]),

ŵ = argmin
w

| |y −Φ(N(w)) | |22 (7)

where w is the learnable weight, which is optimized through
training. After training, the reconstructed signal x̂ can be
obtained instantly by feeding the measurement y into the
pre-trained neural network.
Results and Discussion
Experimental setup

The scheme of our custom-built snapshot compressive
microscope is shown in Fig. 2. The setup is mainly
composed of a femtosecond laser processing system, a
high-resolution snapshot compressive microscope and a
wide field-of-view snapshot compressive microscope. The
femtosecond laser (Fs laser, FLASH-100-IR, ULTRON

 
ACCEPTED ARTICLE PREVIEW 

 

 



Fig. 1. Principle of snapshot compressive imaging, which consists of optical encoding, compressive measurement and
reconstruction.

Fig. 2. Experimental setup of DP-SCM system: L1-L5, lens; OL, objective lens; BS, beamspliter; Fs laser: femtosecond
laser; S: sample. F: IR cut filter. DMD: digital micromirror device. LED: light-emitting diode.
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Fig. 3. Performance evaluation of DP-SCM system. a Wide field-of-view image (left) captured by FOV path, with
zoom-in image (right). b High resolution image captured by the HR path. c Compressed measurement under an exposure
time of 20ms, compressed ratio of 10. d Reconstructed frames from compressed measurement in c. Scale bars in a, b
and c are 500um, 50um and 5um respectively.

Photonics) has a center wavelength of 1030 nm, a pulse
duration of 150 fs, a maximum single pulse energy of 0.2
mJ, and a maximum repetition frequency (single pulse) of
10 MHz. The femtosecond laser is radiated and focused
to the sample plane through a beamsplitter and lens (L1,
f=200 mm). An infrared (IR) cut filter (F) is used after the
objective lens to block the processing light. For in-process
monitoring of the laser material processing, we employ a
dual-path snapshot compressive microscopy system, dubbed
DP-SCM. The DP-SCM system consists of two parallel
optical paths, each optimized for a different range of lateral
resolution and FOV. Taking the high-resolution optical path
as an example, a white-light-emitting diode (LED) is used
to illuminate the sample in a transmissive and wide-field
manner. The sample is attached to a 2-axis motorized
translation stage (GCD-202100M, Daheng Optics). The
transmissive light from the sample is collected by an
objective lens with high numerical aperture (OL, 20×,
NA=0.42) and relayed to the digital micromirror (DMD,
Vialux, DLP7000, 768×1024 pixel count, 13.7 𝜇m pixel
pitch) through a long-focal-length lens (L2, f=400mm). The
DMD imposes binary spatial modulation to the scene upon
transmission. The modulated scene is then relayed onto the
CMOS camera (STC-MBS202POE, Santech, 1624×1240
pixel count, 4.5𝜇m pixel pitch) through another lens (L3,
f=100mm). The magnification rate between DMD and
camera is 0.66, yielding a 1:2 pixel mapping. The camera

maintains a constant frame rate of 50 fps, while the DMD
operates at varying frame rates, ranging from 500 to 1000.
This leads to compression ratios (CR) spanning from 10 to
20. This corresponds to 10 to 20 times faster imaging speed
(To clarify, a CR of 10 represents 10×compression, and so
on and so forth). The total magnification of high-resolution
path is 26×, which in our case guarantees a high resolution
inspection of the sample with limited FOV (about 215 𝜇m).
On the wide FOV path, we share the same OL for collection
of sample light but choose a small-focal-length lens (L4,
f=50 mm) to guarantee a smaller magnification (2.75×). In
this way, optical resolution is sacrificed in an exchange of a
large FOV (about 2 mm). Note that DMD and CMOS in both
paths are identical. Since both paths have their individual
FOVs and resolutions, hereafter, we refer to the FOV and
HR as the FOV of wide field-of-view path and resolution of
high-resolution path respectively in our system.

We begin by validating our setup on USAF resolution
target (USAF 1951 Hi-Resolution Target, Edmund), as
depicted in Fig. 3. In Fig. 3a-b, a standard USAF1951 test
target is used to characterise the FOV and lateral resolution
of our DP-SCM system. As shown in Fig. 3a, the full FOV
of the system is 2 mm through calculation. However, when
zooming into the smaller area, details of the resolution target
is totally lost. By employing another high-resolution path,
the elements of the ninth group can still be resolved. As
shown in Fig. 3b, the lowest element corresponding to a
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line spacing of 645 lp/mm (775 nm in linewidth, which
is quite close to the theoretical resolution with NA=0.41) is
clearly seen in high resolution path compared to the zoom-in
image in wide-field path in Fig. 3a. The detailed resolution
comparison are presented in Supplement Material Fig. S1.

In addition, we characterize the high speed imaging
of DP-SCM system. Fig. 3c-d shows a moving scene of
resolution target imaged by our system (see Visualizations
1 for the complete video). Fig. 3c is the compressed
measurement captured with an exposure time of 20 ms.
Within the exposure time, 10 random masks are displayed
on the DMD sequentially, which gives a temporal resolution
of 2 ms. By feeding the 10 masks (captured in advance) and
compressed measurement into EfficientSCI reconstruction
algorithm [34], we manage to reconstruct high-speed scenes
corresponding to a frame rate of 500 fps from a compressed
measurement captured with a frame rate of 50 fps, as
presented in Fig. 3d. It can be seen that the resolution
target is moving in a diagonal direction and the elements
of the ninth group can still be resolved with sharp edges.
Note that all the reconstruction algorithm is conducted in a
computer with an NVIDIA A40 GPU.

Next, we compare the reconstruction performance using
three algorithms (GAP-TV [36], PnP-FastDVDnet [35]
and EfficientSCI [34]), as shown in Fig. 4. For better
comparison, we select the first recovered frame from
compressed measurement (Fig. 3c) as the baseline. GAP-
TV is a regularization-based optimization algorithm to solve
the ill-posed problem in Eq. (6). PnP-FastDVDnet is an
plug-and-play optimization algorithm, which replaces the
denoising step in a typical optimization-based algorithm
with a deep denoiser (pre-trained neural network), and leads
to better reconstruction and flexibility. Both regularization-
based and plug-and-play optimization algorithm have been
used in different snapshot compressive imaging systems. We
compare both algorithms with state-of-the-art EfficientSCI
algorithm (one solution in Eq. (7)) which trains the deep
neural network in an end-to-end manner and then inferences
efficiently. Specifically, building upon the remarkable
achievements of convolution and Transformer in computer
vision, we have designed a reconstruction network that
leverages the strengths of both techniques. A comparison
of the reconstructed resolution target in Fig. 4b reveals
the EfficientSCI network’s ability to recover more distinct
structural details. Regarding the reconstruction time,
EfficientSCI achieves a significantly faster interference
time of approximately 2.5 seconds for reconstructing a
compressed measurement (with a compression ratio of
10 and an image size of 800x800 pixels). This is
notably swifter compared to GAP-TV (193 secons) and
PnP-FastDVDnet (80 seconds). In practical deployment,
EfficientSCI achieves an interference time of approximately
0.9 second when the image size is reduced to 256x256 pixels,
which meets the real-time imaging requirement. Hereafter

we use EfficientSCI network to reconstruct the dynamic
scenes in laser material processing.
Inspection of laser material processing

In-situ real-time monitoring of laser material processing
is demonstrated in Fig. 5. We consider using a Si − TiN
bilayer film on a Al2O3 substrate as the processing sample
(Fig. 5a). The sample is placed on top of a motorized stage.
While in the process of translating the stage, the focused
femtosecond laser under intense ultrafast laser irradiation is
ablating the material, as shown in Fig. 5b. The repetition
rate and laser power in our experiment is 100kHz and 0.5mw
respectively. We then use our system to capture the real-time
ablating process with the camera working at a frame rate of
50 fps. Fig. 5c and Fig. 5d represent the simultaneously
captured measurements by FOV and HR path respectively.
Given by respective masks (setting compressed ratio is
10), high-speed laser material processing with 500fps is
observed clearly. As illustrated in Fig. 5e and Fig. 5f,
there are two paths corresponding to HR and FOV imaging
module. This indicates that even a slight movement in
the FOV path becomes more pronounced in the HR path.
Consequently, the movement in Fig. 5e may be difficult to
discern, but it becomes more apparent when magnified in
Fig. 5f. The sample stage is moving toward upper-right
direction. The dynamic laser material processing can be
found in Visualizations 2.

Next, we examine the real-time processing when fem-
tosecond laser is scanning upon the material (Fig. 6b). Upon
the same laser parameters and camera setting, we manually
scan the mirror while capturing the compressed scenes in the
HR path. The measurement and reconstruction are shown
in Fig. 6a and Fig. 6c respectively, see Visualizations 3
for the complete video. The femtosecond laser is ablating
the material with 10 times higher speed, as compared with
the measurement, which is captured at the normal camera
frame rate. The scanning occurs in the upper-left direction.
Apart from simple scanning of sample stage or steering
mirror, our approach extends to monitoring the laser printing
process, enabling intriguing applications such as customized
pattern creation through laser printing. The experimental
result is shown in Supplement Material Fig. S2. We
have demonstrated our DP-SCM’s feasibility in real-time
monitoring of laser material manufacturing, whatever in
laser scanning or stage scanning.
Inspection of self-organized periodic nanostructure

To demonstrate DP-SCM’s capability in discovering
more in-depth laser-material interaction, we investigate
inspecting the generation of self-organized nanostrutures.
As reported in [13], laser-induced self-organization of
periodic nanostructures on highly absorbing materials is
commonly attributed to the interference between the laser
and surface plasmon polaritons (SPPs), which are initially
excited by the surface’s inherent roughness. Interference
between a laser beam and the prominent surface-scattered

 
ACCEPTED ARTICLE PREVIEW 

 

 



Fig. 4. Comparison of different reconstruction algorithms. a Results of GAP-TV, PnP-FastDVDnet, and EfficientSCI. b
Line profile draw from a. Scale bar in a is 10um.

.

Fig. 5. In-situ and real-time monitoring of laser material processing when translating the sample stage. a Snapshot of
processing material. b The translation stage is moving in one direction. c Compressed measurement captured by FOV
path (exposure time = 20ms, CR=10). d Compressed measurement captured by HR path (exposure time = 20ms, CR=10).
e Reconstruction by EfficientSCI from FOV measurement. f Reconstruction by EfficientSCI from HR measurement.
Scale bars in c and d are 200um and 20um respectively.
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Fig. 6. In-situ and real-time monitoring of laser scanning process when scanning the focal point via rotating the mirror.
a Compressed measurement captured under 20ms in high-resolution path. b Schematic of laser scanning process. c
Reconstructed frames with compressed ratio of 10. Scale bar in a is 10um.

waves leads to periodic variations in optical intensity,
consequently causing selective modulation of the surface.
As a result, periodic nanostructures acquire their long-range
alignment and orientation directly influenced by the phase
and direction of the surface-scattered waves, with their
wavelength determining the structural periodicity. However,
these periodic nanostructures often suffer from a lack of
consistent regularity.

We first use our DP-SCM system to observe the self-
organized periodic nanostructures. The femtosecond laser
is focused onto the material through a lens with a focal
length of 100mm. A self-organized periodic nanograting
is observed in the HR path when we set DMD to be blank
statically (function as mirror). As is displayed in Fig. 7b, the
periodicity of this grating is measured to be 836nm, which
corresponds well with the one reported in literature [13].

Now that we have demonstrated the periodic nanostruc-
tures in high-resolution path, we employ DP-SCM system to
observe its generation process. To compress the production
process of self-organized periodic nanostructures into one
single shot, we have conducted numerous experiments to tes-
tify the appropriate experimental conditions for observation
since the repetition rate and laser power will greatly affect its
nanograting generation speed. The best repetition rate and
laser power in our experiment is 5kHz and 5mw respectively.
Fig. 8 is the experimental results when the compressed ratio
is 10, corresponding to a frame rate of 500fps when the
compressed measurement is taken with an exposure time of
20ms. We see from Fig. 8b that the nanograting is growing
at a slow pace. In the reconstruction frames, the initial half
of the frames almost entirely capture this growth, while the
subsequent time stamps show no discernible change in the
nanograting’s growth. This is attributed to the insufficient
speed of the imaging process. To visualize the whole
growing process, we increase the compressed ratio to 20,
corresponding to a high-speed camera with a frame rate of

1000 fps when the exposure time for one measurement is set
to 20ms. As shown in Fig. 9, it is evident that the periodic
structure can be visualized within 20 frames. These two
reconstructed videos are placed in Visualizations 4 (CR=10)
and Visualizations 5 (CR=20). The 1st reconstructed frame
shows no periodic structure while a obvious growing can
be seen in the following reconstructed frames, such as
frame 11 and frame 19. We want to emphasize that many
laser pulses are involved in a single frame. To explore
nanograting growth with fewer laser pulse, we reduced the
femtosecond laser’s repetition rate to 1 kHz, aligning it with
the twice the speed of reconstructed frame rate. In this
way, each reconstructed frame captures the interaction of
two laser pulses with the sample. The results are presented
in Supplement Material Fig. S3.

Notice that the signal-to-noise-ratio of the reconstructed
frames in compressed ratio of 20 is much lower compared
with the one in compressed ratio of 10. This is due to the
fact that higher compressed ratio always comes with lower
dynamic range since shorter temporal exposure (temporal
resolution) is present. More details of this aspect can be
found in Supplement Material Fig. S4. This problem can be
mitigated by devising novel algorithms working at low light
conditions or using low-light images to train the network.
Conclusion

In summary, in-process real-time monitoring of the
laser material manufacturing is demonstrated by using our
custom-built DP-SCM system. To evaluate the performance
of the DP-SCM system, the FOV, the lateral resolution
is measured to be 2mm and 775nm respectively. A
frame rate of 500fps is validated by using a conventional
camera working at a frame rate of 50fps. Moreover, we
compare three reconstruction algorithms and choose the
state-of-the-art EfficientSCI algorithm. To validate the
system’s feasibility in in-process laser material processing,
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Fig. 7. Self-organized periodic nanostructures. a Setup for generating self-organized periodic nanostructures. b Captured
nanograting structure in high-resolution path (left), with zoom-in image (right). Scale bar in b is 10um.

Fig. 8. In-situ and real-time monitoring of the growth of self-organized periodic nanostructures with a compressed ratio
of 10. a Compressed measurement captured under 20ms in high-resolution path. b Reconstructed frames (corresponding
to the white box area in a) with magnified images on the up-right corner (corresponding to the yellow box area). Scale
bar in a is 10um.

Fig. 9. In-situ and real-time monitoring of the growth of self-organized periodic nanostructures with a compressed ratio
of 20. a Compressed measurement captured under 20ms in high-resolution path. b Reconstructed frames are presented,
showcasing one frame for every two images, along with magnified images in the upper-right corner, corresponding to the
yellow box area. Scale bar in a is 10um.
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we conduct experiments when the laser or translation
stage is scanning across the sample plane. The results
showcase DP-SCM’s superiority in imaging speed in terms
of laser material processing. Furthermore, we perform
in-situ and real-time monitoring of the growth of the
self-organized periodic nanostructures. With an imaging
speed at a frame rate 500fps (exposure time of single
measurement=20ms, CR=10), we are able to witness the
partial growth of nanograting. When increasing the CR
to 20, corresponding to an imaging speed of 1000fps,
the whole growing process of nanograting can be visually
observed. Therefore, we validate DP-SCM is capable of
visualizing the ultrafast laser processing and uncovering
novel phenomenons of laser-material interaction. Note that
the imaging setup is in a transmissive module, which can also
be adapted into refection setup according to the transparency
of manufacturing sample.

Our proposed method features wide-field and high-
resolution imaging at high-speed imaging. Wide-field and
high-resolution imaging help visualize the whole processing
with finer details, which is applicable to all imaging systems
that requires in-situ monitoring. For scenarios that requires
higher imaging speed, conventional cameras (working at a
frame rate below 500fps) fail to provide enough temporally
resolved information, our method offers a fast imaging way
to visualize the process with relatively low cost and low
bandwidth.

The snapshot compressive imaging not only compresses
the temporal signals but also 3D [47] and spectral
information [48], which can also be used to inspect the
3D structure [49] and structure color [50] in in-situ
real-time laser processing. Lastly, this system can be
readily accommodated into other laser processing setup to
enable high-speed imaging. We expect that this snapshot
compressive imaging system can find more applications
in fields of laser processing and other manufacturing
inspection.
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