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Abstract

stability.

We report variable shear interferometers employing liquid-crystal-based geometric-phase (GP) gratings.
Conventional grating-based shear interferometers require two lateral shifts of the gratings to enable phase-shifting
capabilities in x- and y- direction and two axial shifts of the gratings to adjust the shear amount in x- and y-
direction, i.e., these systems need control of four axes mechanically. Here we show that the GP gratings combined
with a pixelated polarization camera give instantaneous-phase shifting so that no mechanical movement is
necessary to obtain phase shifts. Furthermore, we show that a single fixed shear with a rotational shear axis
provides a more robust selection of shears while requiring the control of only one mechanical axis. We verify this
statement using spatial domain and frequency domain criteria. We further show that the resolution of the
reconstructed wavefield depends not only on the numerical aperture of the imaging system, the pixel size of the
detector, or the spatial coherence of the source but also on the ability to determine the shear amount accurately.
To improve this, we report a methodology to accurately detect the shear amounts using the second derivative of
the autocorrelation function of the measured holograms, which further relaxes the requirements on mechanical
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Introduction

Single-beam wavefront reconstruction techniques are
exciting alternatives to interferometry. These techniques
are inherently robust to vibrations and often can be
designed in a compact optical setup. Recent research
expands those techniques to partial coherent sources, where
LEDs are employed in place of lasers. Another interesting
field is the area of bio-imaging,
microscopes are converted into phase measuring devices
using a single-beam phase wavefront reconstruction add-
on. A further appealing aspect is that many single-beam
systems can be designed to work with no beamsplitter,

where existing
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allowing the sensor to be closer to the sample and enabling
simpler optical with higher-numerical
aperture. In phase retrieval, there are two representative
families of wavefront reconstruction techniques. Firstly,
techniques based on deterministic models ™, and secondly,
techniques that employ an iterative solver that utilizes
wave-propagation techniques”’ or Fourier relationships™’.

With the advent of faster computer systems, new
cameras are often developed with a higher pixel count,
diminishing many advances of the higher computational
power. Optical measurement technologies need to adapt to
survive this trend through more innovative algorithms, new
measurement concepts, or both.

For instance, in the field of phase retrieval, the

measurements

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation,
5v distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.


http://creativecommons.org/licenses/by/4.0/
mailto:kfalaggi@uncc.edu

Shanmugam et al. Light: Advanced Manufacturing (2022)3:16

convergence may be improved using multi-resolution and
relaxation techniques'”’. Another possibility is to alter the
illumination'' or combine deterministic and iterative
algorithms".

However, the elephant in the room of all methods
mentioned above is the inverse problem resulting from the
data produced by the unmodulated optical beam. In other
words, often, the data is too similar, and significant efforts
need to be made to reduce the similarity (e.g., repeating the
measurement at a large defocus distance’).

Recent advances in computational shear
interferometry ™" allow actively modulating an incident
beam as it interferes with itself. Modulation of the beam
increases instantly the diversity in the data. In particular,
when employed with phase-shifting techniques”, it is
possible to obtain the complex crossterm of two interfering
wavefields directly. Despite this sophistication, the system
by Falldorf” requires a spatial light modular (SLM), which
significantly contributes to the system costs. The wavefront
reconstruction technique reported by Falldorf et al.” is
based on a gradient descent approach for non-symmetric
shearing systems. However, compared to the non-
symmetric case, deriving the grading of a that non-
holomorphic function for the case of a ‘“symmetric ”
shearing system is not straightforward. Hence other
approaches like the alternating projections by
Konijnenberg® are preferred reconstruction algorithms.

Recent advances in geometric phase (GP) elements lead
to the development of GP gratings and GP lenses that can
be employed in lateral and radial shearing interferometry' ™",
with polarization phase-shifting capabilities™”'. The
remaining quest is to recover the correct wavefront from
the captured phase-shifted interferograms.

This paper proposes a variable shearing interferometer
that consists of a series of GP gratings and polarization
optics. This setup enables measuring a series of phase-
shifted interferograms for a given shear amount, as shown
in Fig. 1. In a subsequent step, we reconstruct the
wavefield using a modified version of the alternating
projections algorithm, developed by Konijnenberg', and a
series of interferograms with different amounts of shear.
The discussed systems are the first experimentally
demonstrated ~ GP  grating-based  variable  shear
interferometers for complex wavefield reconstructions. We
discuss various possible configurations of these
instruments and demonstrate the success of two distinct
shear selection strategies (employing one or two grating
pairs). We analyze these findings using the “frequency
information density” and the “spatial information density”
analyses based on transfer function and support function
concepts introduced by Servin in Ref. 22. We further show
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Fig. 1 Principle of GP grating based shearing interferometry for the
case of linearly polarized light.
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that a GP grating configuration with a fixed shear amount,
but an adjustable rotational shear axis (one mechanical
rotational axis) is sufficient to obtain robust measurements
while maintaining phase-shifting capabilities using a
pixelated polarization camera. We also investigate the
effect of other error sources (e.g., imperfect shear
estimation), which affects the resolution of the
reconstructed wavefront. This effect is not commonly
known (for coherent systems, the resolution is often a
result of numerical aperture, pixel size, or spatial coherence
of the source). To mitigate this source of error, we report a
shear detection technique using the peaks of the second
derivative of the autocorrelation function of the holograms.
Measuring the shear amount directly from the hologram is
different from relying on a well-calibrated system and
increases the system’s accuracy.

Results

Shear Selection

Polarization gratings, also known as geometric phase
(GP) gratings, are liquid crystal polymer-based optical
gratings with a diffraction angle that depends on the
polarization and wavelength of light. GP gratings are
designed to diffract right-handed circularly polarized light
(RHCP) and left-handed circularly polarized light (LHCP)
at a negative angle and positive diffraction angle,
respectively. The value of this angle depends on the
prescription; commercially available gratings with various
groove densities result in diffraction angles of the first-
order between 3 and 10 degrees. The diffraction angle can
be related directly to the wavelength and groove density
using the well-known equation m 4 = d sin(6).

A lateral shear in the spatial domain is achieved when
two GP gratings are placed consecutively'’, as shown in
Fig. 1. In that configuration, both identical GP gratings are
aligned along the same axis and orientation. In this way,
the first GP grating deflects the incoming beams at the
angles +/— a, and the second GP grating compensates this
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deflection by diffraction the beam into —/+ a. The
properties of these GP gratings in this configuration are
outlined in Ref. 17. Adjusting the distance between the first
and the second GP grating allows adjusting the shear
amount of the two interfering waves, as shown in Fig. 2,
enabling unique properties that can be used for adjustable
shearing interferometry.

As shown in Fig. 2, shearing along the y-axis is possible
by flipping the gratings by 90 degrees. An instrument
employing a series of four GP gratings enables shearing in
both x- and y-direction. This configuration shears along the
x- and y-axis independently. This system uses 4 gratings in
total: one pair for x-shear and the other pair for y-shear.

A different possible configuration is to maintain a fixed
shear between two beams and modulate the fringes by
rotating the shear axis about the optical axis, as shown in
Fig. 3. This configuration requires only one GP gratings
pair and is more compact than the other configuration of
Fig. 2c.

Furthermore, as the linearly polarized light at the
instrument’s input is converted into left and right circular
polarized components, there is a need to employ a linear
polarizer to make these two waves interfere. Notably, this
configuration  provides  geometric  phase-shifting
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capability”, i.e., by rotating the axis of the polarizer, it is
possible to create a series of phase-shifted interferograms,
as shown in Fig. 4.

In the following sections, we propose using GP gratings
for multi-shear variable shearing interferometry with
phase-shifting capability. We further evaluate the
performance of the instrument with mentioned above
configurations using multi-shear wavefront reconstruction
techniques.

Wavefront reconstruction algorithm for multi-shear
variable shear interferometry

The previous section showed how GP gratings could
obtain a series of phase-shifted interferograms for various
shear amounts. These interferograms allow calculating the
complex cross-terms of the two-interfering waves at each
shear. The challenge is to reconstruct the complex
wavefield from this data. In this section, we present an
iterative  algorithm based on the approach of
Konijnenberg'® that was inspired by the alternating
projection algorithms™*

Consider a general wavefield u with the amplitude A and
the phase ¢ as

u=A-exp(ip) (1)

a X gratings

C Y gratings X gratings

Fig. 2 Examples of mterferograms for the case of a spherical wave at the distance z = 350 mm with different shear amounts in x- and y- direction.
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Fig. 3 Examples of interferograms for the case of a spherical wave at

the distance z = 250 mm with constant shear and different grating
rotational angles.

which produces the following interferogram 1, s (73) in

shearing, as

2 2

1s (R) =u(X + 85 +[o(R -5
+2R{C, (X ) exp(-io))} )

Where Eg = [ds,.dsy] and, ds, and ds, is the shear in x- and
y- direction, & is the phase shift induced by the rotating

polarizer, and C, (7) is the complex cross-term
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C.(3)=u (=) u(3 +ds) 3)

The term C, (75) is estimated using phase-shifting
techniques, which for the four-bucket algorithm results in

€.3)= (1) 1) i1 (F) 1 (1) 0

The reconstruction algorithm uses the term C, (7) that is

3

obtained at different shears ‘7, to reconstruct the object
wavefield through an iterative process. In this work, we
employ an alternating projections (AP) approach developed
by Konijnenberg'® for the x-ray community. The algorithm
applies two distinct constraint sets, where each constraint
allows only a limited family of solutions. The objective of
the wavefield reconstruction algorithm is to identify the
unique solution that satisfies all constraints (and for all
shears). These constraints are satisfied by employing
alternating projections between the two solution domains,
in which we apply both, so-called “object constraints” and
so-called “measurement constraints”.

Switching between “object constraints” and “measurement
constraints ” is applied continuously until the algorithm
converges to a specific wavefield. The convergence can be
conveniently estimated using the following loss function

L3 @) -2

0 3)-12.R)f) 5)

th)ere subscript n denotes that the wavefield uses the shear
ds,, S is the total number of shears, and for convenience,

+

we define the estimated wavefield after N iterations as
f (76)) to distinguish it from ideal wavefield u(?c)) The
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Fig. 4 a Intensity ditribution of a spherical wavefront with constant amplitude before reaching the linear polarizer. b Intensity after the linear
polarizer for four different angles of the polarizer axis to produce a phase shift between interfering waves of 0, n/2, m, and 37/2.
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notation f (_x>) is used as a general indication to represent
estimated wavefields from both constraints, where the
notation fM (7) denotes the estimate of the wavefield
directly after the measurement constraint is applied, and
N (—x>)den0tes the estimate of the wavefield directly after
the object constraint is applied. For further simplification,
the symbols 'n,+' and 'n,-' in the subscript are used to
represent positive and negative shears, i.e.,

Jos (7) =f (73 + d—>sn) Consequently, the estimated

complex cross amplitude term can be presented as
Cestn (_X)) =f" (_x> - E) f(_x> + d?;)
=t (X) 1 (%) ©)

and can be generated using the estimated wavefield ™, (_x>)
at any shear 57; .

Notably, in the presence of noise, there is no exact
solution. However, the wavefield reconstruction algorithm
estimates the best fit solution that matches the experiment
data. The loss function serves as a metric to be observed
for convergence with an increasing number of iterations.

Fig. 5 shows the steps of the wavefield reconstruction
algorithm. After an initial guess, the algorithm
continuously applies the so-called object and measurement
constraints alternatingly until the loss function reaches the
desired level. The application of those constraints is
discussed in more detail below.

Estimation of f)', (_x)) using the initial guess
This step of the algorithm uses only the initial guess
f (—x>) in the first iteration to estimate f), (—x>) An initial

Shear the initial
guess, f)L(¥)

Initial guess f(X) >

Y
| Apply object constraint
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FulRy= 5635 (FYL(Ry-exp(2m-i-k-ds,)+ 3L ()-exp(~2i-£-d5,))
0.(0)=F {F (k) exp(F2m-i-k-ds,)}
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Fig. 5 Principle of multi-shear wavefront reconstruction algorithm.

So-)=f0-(X)+
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guess is assumed for f (—x>) (e.g., a spherical wave, a plane

wave, or a random wavefield) and is laterally sheared by
the same shears used in the experiment. For a wavefield
f (74’), the shearing is done in the Fourier domain using the

following equations.

F(TQ) -7 (f(3)) 7)

£, (_x>) =F! {F(?) .exp(¢2ﬂ' 0K d_s,,))} 8)

Assuming that the initial guess wavefield is from the
measurement constraint domain, the initial guess and its
sheared components are indicated as f}, (_x>) A wavefield
with constant phase and unit amplitude is used as an initial
guess for the reconstructions done in this paper.

Application of the Object constraint

The object constraints are applied by transforming the
sheared components of the estimated wavefield to the
Fourier domain and compensating the shear for each
£ (_x>) to obtain f (_x>) using the Fourier Shift theorem. All

—
calculated values for F(k) are averaged to obtain a more

accurate result.

R (K) =7 (3)) 9)

+FY (?)-exp(—zn-i.?d—’sn)) (10)

(—
Finally, Fest(k) is transformed back into the spatial

domain using the inverse Fourier transform. However,
because the measurement constraints (applied in the second
part of the iteration) require the wavefield for different
shears, we apply again the Fourier shift theorem to obtain

£, (_x)) as

©,(R)=7" {Ft (T{) : exp(xzn-i.T{ : &’)} (11)

Application of the Measurement constraint

The measurement constraint equations use the estimated
wavefield from the object constraint fY, (—x>) and the
measured complex cross-term C, (?)(obtained from phase
shifting) to estimate the wavefield solution in the
measurement constraint domain. The following equations
are a modified version of the equations used by
Konijnenberg in'® to estimate the wavefield.
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Behavior of the algorithm

The algorithm uses two sets of constraint equations,
object constraint Eq. 10, and measurement constraint Eqs.
12, 13. Each set of constraint equations has a solution set.
The algorithm starts with an initial guess projected onto the
object constraint solution set by using the respective
equations. This produces an estimated wavefield which is a
projection on the object constraint solution set. This
wavefield is then projected onto the measurement
constraint solution set using the respective equations, and
the process repeats until convergence. Ideally, the solution
we are looking for is the one that is at the intersection of
these two solution sets. However, in practice, due to noise
and other external factors, such intersection does not exist,
and the algorithm converges when the projections oscillate
between the two solution sets with solutions at the closest
proximity to each other.

Simulation using synthetic data

The performance of the algorithm was evaluated by
simulations using MATLAB. Preliminary simulations were
made for a resolution of 256 x 256 pixels. For this
simulation, a point source was generated with a wavelength
of 600 nm at a z-distance of 87.5 mm and was sampled
with a pixel size of 3.45 um. The reconstruction algorithm
uses FFTs to shear the estimated wavefields at different
steps in the reconstruction. The use of FFTs, in turn,
implicitly imposes a periodic boundary condition.
Therefore, we use an aperture for both simulations and
experiments to mitigate problems during reconstruction
that might arise from periodic properties of FFTs. For this
reason, a circular aperture mask with a diameter of 180
pixels was applied. Future reconstruction algorithms may
exclude samples that exceed the computational window,
especially at larger shear. Those samples need to be
reconstructed with measurements taken at smaller shear
amounts.

A series of four phase-shifted intensities were generated
for each shear position. The shears generated for this
simulation are shown in Fig. 6a. Additive white Gaussian
noise (AWGN) with a standard deviation of 20% of the
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peak intensity has been added to the generated intensities
to model the effect of noise in these simulations.
Afterward, to realistically model the effect of cameras, an
8-bit discretization has been applied to the intensities.

For this simulation, a total of 48 interferograms have
been generated corresponding to 12 different shears with 4
phase-shifted interferograms. The ideal wavefront and
reconstructed wavefront are shown in Fig. 6b, c,
respectively. The corresponding phase error of the
reconstructed wavefront is shown in Fig. 6d. Further
investigation of the error map showed the presence of high-
frequency artifacts, as highlighted in Fig. 7.
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Fig. 6 (Simulation) Results of reconstruction with simulation
parameters: FoV 256 x 256 pixels, Pixel size 3.45 pm,Wavelength
0.6 pum, Aperture size 90 pixels, Z distance 87.5 mm. a Shear
selection. b Ideal phase map. ¢ Reconstructed phase map. d Error
map between ideal and reconstructed data.
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Fig. 7 High frequency artifact from reconstruction algorithm. a Error

map zoomed. b Error map profile.
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These high-frequency artifacts occur at Nyquist
frequency and appear to be a product of the reconstruction
algorithm. Further analysis is required to investigate the
source of these artifacts. For the reconstructions discussed
in this paper, we use a low-pass Fourier filter to mitigate
the formation of these artifacts.

Fig. 8 shows error maps generated by mapping the
difference between the ideal and reconstructed wavefield
before and after applying the filter. A cross-section of the
error profile before and after filtering is shown in Fig. 8c,
d, respectively. This simple procedure reduces the
magnitude of the RMS error by one order of magnitude.
Because a Fourier low-pass filter has been employed with a
corner frequency of k. = (4/5) - (1/pixel size), an artifact is
produced along the boundary of the aperture. However,
other filtering techniques may be applicable depending on
the application, and even Zernike polynomials may be
fitted to the data. The use of different filtering techniques is
beyond the scope of this work.

Evolution of loss function

As mentioned earlier, the evolution of the loss function
indicates how close the algorithm is to achieving the best
solution or achieving convergence. The loss function is
evaluated in these experiments by calculating the change
between the solutions generated by the two constraints on
positive and negative sheared estimated wavefields. The
loss function was already defined in Eq. 5 and is reiterated
here in Eq. 14 for convenience. Fig. 9a shows the evolution
of loss function during reconstructions done in Fig. 8
before the filter was applied.
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Fig. 8 a Error map before filter (RMS error: 4.1E-3 rad). b Error map
after filter (RMS error: 0.42E-3 rad). ¢ Profile of error map before
filter. d Profile of error map after filter.
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Fig. 9 Evolution of loss function. a without filter. b with filter.
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Fig. 9a shows that the loss function converges after 30
iterations of the reconstruction without a Fourier filter.
Given the filter’s effectiveness in Fig. 8, we have
investigated the use of the filter within the reconstruction
algorithm. The sudden surge at the start of the loss function
in Fig. 9 is a characteristic feature of phase retrieval and
reconstruction algorithms. The temporary increase of the
value of the Loss function is expected because the solver
climbs out of the local minimum. Other phase retrieval
algorithms such as the “hybrid input-output algorithm "
show a similar behavior.

Two cases were considered for this study: (i) using the
filter after every 5 iterations and (ii) applying the filter in
every iteration. Fig. 9b shows that applying a filter enables
a drop in the convergence values in both cases, thus
indicating an improvement in the reconstruction process.
Interestingly, the reconstruction algorithm for case (i)
consistently converges back to the solution containing the
high-frequency artifact. Therefore, we
employing a Fourier filter within the wavefront
reconstruction algorithm to suppress all undesired artifacts
continuously.

Please note, the algorithm described is a modified
version of the alternating projections algorithm developed
by Konijnenberg et al. in Ref. 16. For better clarity we
summarize the differences to the original algorithm from
Ref. 16.

e The data recorded from experiments in Ref. 16 are in
the Fourier domain. In this paper, all recorded data from
experiments are in the spatial domain.

e Eq. 10 is the modified version of the object constraint
equation. The original equation (Eq. 10 in Ref. 16) was
defined in the spatial domain. In this paper, this equation is
defined in the Fourier domain.

e Eqgs. 12,13 are the modified versions of the
measurement constraint equations. The original equations
(Eq. 15 in Ref. 16) were defined in the Fourier domain. In
this paper, these equations are defined in the spatial
domain.

S
=1

recommend
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e The algorithm in Ref. 16 uses two sets of equations in
measurement constraint (Egs. 15,16 in Ref. 16), rough-
reconstruction equations for initial convergence (Eq. 16 in
Ref. 16) and fine-reconstruction equations for final
refinement (Eq. 15 in Ref. 16). This paper only uses the
modified versions of the fine reconstruction equations.

e After initial convergence, we include a Fourier filter in
the measurement constraint equations to mitigate the
effects of high-frequency artifacts.

e Multi-resolution technique'’ is incorporated into this
algorithm to mitigate the effects of initial guess and
improve convergence.

Comparison of the two configurations: (Simulation)
In the cartesian coordinate shear system, there is the
freedom to choose the shear in the X and Y direction
independently. However, the optical configurations shown
in Fig. 2 are restricted to one quadrant due to geometrical
constrains. In principle, this limitation may be overcome
using a 4f- optical setup (obtain positive and negative
shears for a grating pair). However, this configuration
increases the size of the system. There is freedom in the
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polar coordinate shear system to choose shears across all
four quadrants, but these shears lie on a circle with a
constant radius. When these shear systems are
implemented experimentally, the shear amount cannot be
controlled directly and estimated.

The choice of shear selection has an impact on the
reconstruction of the wavefield. In general, increasing the
number of shears provides more information on the object
wavefield for the algorithm to reconstruct the wavefield.
However, improper selection of shears could also lead to
the algorithm not having sufficient frequencies to
reconstruct the object wavefield, thus resulting in artifacts.
We want to highlight this typical behavior of this system
via simulation using a few exemplary sets of shears, as
shown in Fig. 10.

Each simulation was performed with 24 shears, where
the selections are shown in Figs. 10a—c. The selections
analyze two possible xy-shearing configurations shown in
Fig. 10a, b (see Fig.2 for configuration) and the fixed
shear with variable shear axis shown in Fig. 10c (see Fig. 3
for configuration).

In test 1 (Fig. 10a), the shears have been selected along

Shear selection
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Fig. 10 Comparison of reconstruction results between different configurations. a Shear selection for test 1 in cartesian coordinate configaration.
b Shear selection for test 2 in cartesian coordinate configuration. ¢ Shear selection for polar coordinate configuration. d Reconstructed phase map
from test 1. e Reconstructed phase map from test 2. f Reconstructed phase map from polar coordinate configuration. g Phase error map from
reconstruction using test 1 parameters. h Phase error map from reconstruction using test 2 parameters. i Phase error map from reconstruction using
polar coordinate configuration.
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an approximately linear trend. The reconstructed phase
map from this shear selection showed that some of the
frequencies were not being reconstructed correctly, which
is a consequence of the ambiguity that arises from the
measured data. The reconstruction results are shown in
Fig. 10d, g. When the selection of shears was scattered
across one quadrant (Fig. 10b) as in test 2, the
reconstruction algorithm had sufficient data to reconstruct
most of the point-source wavefield, as shown in Fig. 10e.
However, the error map in Fig. 10h shows a curvature,
indicating the possibility of some missing frequencies. This
slowly varying error is critical as it produces a so-called
form error that is difficult to filter out when observing
aperture size measurement objects (e.g., mirrors or lenses
under test). This error may be less critical when the sample
is small (e.g., in the case of a cell under a microscope). The
shear selection shown in Fig. 10c is based on a variable
shearing axis but with a fixed shear amount. The latter
system allows accessing all four quadrants, and the shears
can be selected at all possible rotation angles of the shear
axis. The reconstruction is shown in Fig. 10f. The error
map shown in Fig. 10i shows that the error map is
dominated only by high-frequency noise patterns, which
can be filtered more easily. These results demonstrate that
selecting shears across all quadrants results in better
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reconstruction because it provides more information for a
successful reconstruction.

Transfer function analysis (see also Ref. 22), to
estimate frequency domain information densities
To better understand the results and characteristics
features in the error maps of Fig. 10, further study was
done using transfer function analysis to investigate the
effectiveness of the selected shear sets to transmit
information for wavefield reconstruction. Extensive studies
have been done by Falldorf ** for non-symmetric shears and
Servin” for symmetric shears in understanding the
frequency response of spatially shearing systems. Inspired
by Servin’s description” for the transfer function, we
define the frequency information density as
S
T(kok)= > sin® [2n7<’.dT,,] (15)
bd i —
where k = [k,,k,]is the frequency coordinate and ds = [ds,,
ds,] is the shear in x- and y- directions. This transfer
function analysis estimates the “frequency information
density” at each spatial frequency coordinate for a given set
of shears. These functions were evaluated and mapped for
all three configurations as shown in Fig. 11.
Figs. 1la—c are the frequency domain information
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Fig. 11 Transfer function analysis (Frequency information density plots with points below threshold 2): a Test lin cartesian coordinate
configuration (34 datapoints below threshold). b Test 2 in cartesian coordinate configuration (21 datapoints below threshold). ¢ Polar coordinate
configuration (1 datapoint below threshold). d Test 1 plot in cartesian coordinate configuration zoomed near small frequency regions. e Test 2 plot
in cartesian coordinate configuration zoomed near small frequency regions. f Polar coordinate configuration plot zoomed near small frequency
regions.
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density maps for the three shear sets described in Fig. 10.
Figs. 11d—f are the same maps but zoomed in near low
spatial frequencies to visualize better the behavior at these
regions, where regions below the threshold of 2 are
highlighted in red. Fig. 11d shows a significantly high
amount of frequency sets that have transfer function values
below the threshold. These cluster appear to dominate in
regions where kx =~ ky. This indicates that a large number
of frequencies along the 45-degree angle will have poor
reconstruction in the estimated wavefield at longer spatial
wavelengths. This conclusion is in agreement with Fig. 10g.
A similar behavior is observed in Fig. 11b, e, however, the
number of frequency sets with transfer function values
below the threshold of 2 are located at both low and high
frequencies, with a minimal presence near low spatial
frequencies. The locations of these cluster indicate that
very low spatial frequencies will appear in the error map
but will have better reconstruction than the previous shear
set. This is observed in Fig. 10h, but there are also high
frequency errors present due to low values of the transfer
function at higher spatial frequencies. The polar
configuration in Fig. 11f has no transfer function values
below the threshold of 2, except for the (trivial) frequency
at (0,0). This indicates good reconstruction of the estimated
wavefield at all spatial frequencies.

Spatial support analysis (see also Ref. 22), to
estimate spatial domain information densities

The following section demonstrates how spatial overlaps
between different shears impact the reconstruction of the
final wavefield. When an object wavefield passes through
the gratings, it splits in two, represented as beam 1 and 2 in
Fig. 12a. Depending on the shear amount, there is an
overlap region between the two beams (overlap region is
indicated in yellow). Since the overlap region produces an

a
Beam 1 Beam 2
b
peam | \
e 3 /

Fig. 12 Demonstration of data recorded by each shear: a Beam 1 and
2 overlapping. b Summation of overlapped regions indicating regions
that have data for reconstruction (yellow regions).

Page 10 of 18

interference pattern, the phase information from the
overlap region feeds into the algorithm. Fig. 12b shows
which areas of the input beam provide phase information to
the reconstruction algorithm (regions indicated in yellow).

This idea is further extended to multi-shear
interferometry in Fig. 13. Fig. 13a shows the overlap
regions from an object beam with a diameter of 600 pixels
sheared by 175 pixels along the x-direction. Fig. 13b shows
the overlap regions if a second shear is added to the
measurement in the orthogonal direction by the same
amount. In Fig. 13b the yellow areas indicate regions with
two overlaps, green areas indicate regions with one
overlap, and the dark blue areas indicate regions with no
overlap. This idea is extended over 24 shears in Fig. 13c,
showing a significantly higher count of overlaps (or
number of effective measurements). This case also shows
an example of a situation where the algorithm will not
completely reconstruct all spatial frequencies near the
wavefront’s center because the chosen fixed shear is too
large (175 pixels). Fig. 13d shows an alternative set of 24
shears (i.e., with a small shear amount compared to (c)
with 80.5pixels). There, all of the spatial locations have
been measured at least 20 times. The case presented in
Fig. 13d has the highest potential to successfully
reconstruct the wavefield due to maximum overlap across
the whole area.

It should be noted that (as discussed by Servin™) the
wavefront may be reconstructed even at regions where
there is no overlap. This phenomenon is especially true for
lower spatial frequencies because they do not need to be
sampled everywhere. However, the reconstruction is
increasingly difficult at higher spatial frequencies at a
given location if no interference exists.

The same concept is applied to the three configurations /
shear sets discussed in Fig. 10 and the overlap distribution
is mapped in Fig. 14. Fig. 14a, b show fewer overlaps
along the boundary at 45-degree angle. The number of
effective measurements drops from 24 to 13. On the
contrary, Fig. 14c shows uniform distribution of overlaps
covering the majority area of the object beam. At the
border, there are still 20 effective measurements recorded,
which indicates better reconstruction across the whole area
of the object.

Effect of pixel shear errors on the resolution of the
reconstruction (Monte Carlo simulation)

Any error present in the estimated shear value propagate
through the reconstruction process and result in an error in
the final reconstructed wavefield. This mismatch between
actual and assumed shear amounts can result in error
artifacts in the reconstructed wavefield or missing
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frequencies from the original wavefield. Monte-Carlo
simulations were carried out to evaluate the effect of errors
in the estimated shear pixels in reconstructing the
wavefield by adding normal distributed random errors to
the shear values in X and Y direction for the shear
configuration in Fig. 10c (100 simulations for each case).
Furthermore, a total of 20% intensity noise (of the peak
value) has been added to all interferograms to include the
effects of noise in realistic measurement conditions.

This series of simulations provides an overview of how
the phase errors in reconstructed wavefields are affected by
the imperfect shears. The results of the series of
simulations have been summarized in a box plot, as shown
in Fig. 15. As expected, when observing the RMS error in

the reconstructed phase, there is a clear correlation with the
increasing amount of shear error. However, it is interesting
to notice that the different spatial frequencies are affected
in different ways; as the standard deviation of the shear
error increases, the ability of the algorithm to reconstruct
higher spatial frequencies decreases. Figs. 15b—d show the
measurement of a USAF target where the Monte Carlo
simulation used a shear error of 1-, 3-, and S5-pixels
standard deviation, respectively.

Additional processing of measurement data needed
for experimental data
Shear detection

The reconstruction algorithm requires the shear amount
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to be known. As concluded from the Monte Carlo
simulations, the better the estimation of the shear amount,
the lower the reconstruction error and the higher the spatial
resolution. In this work, we have estimated the shear
amount by calculating the auto-correlation of the recorded
intensity maps. To increase the robustness of this
estimation, we have removed the sinusoidal fringe
modulation by averaging all four measured phase-shifted
intensity patterns. One examplary measurement is shown in
Fig. 16a. The second-order derivative of the auto-
correlation map has been computed along one direction to
further enhance the peak in the auto-correlation map. The
resulting spikes for the case in Fig. 16a are shown in
Fig. 16b, and they are prominently identifiable. The
second-order derivative of the auto-correlation map
comprises three peaks: a center peak and a peak on either

S
A

2 Yosheg, \
3

Fig. 16 a Intensity map with sheared images of object. b Second
derivative of auto-correlation map showing peaks corresponding to
shear in X and Y direction.

side of the center peak, which is located at twice the value
of the actual positive and negative shear amounts. The
shear amount is estimated by tracking one of the side peak
positions to the center peak. The difference in X and Y
coordinates of the side and center peak gives twice the
shear value for each averaged intensity map. The actual
shear can be detected down to an accuracy of 0.5 pixels.
Additional compensation for the
polarization camera

When working with left and right circular polarized
waves, it is convenient to employ pixelated polarization
cameras phase-shifted intensities
simultaneously. The polarization camera enables single-
shot phase-shifting during the measurement process for
each shear. The single-shot phase-shifting capability offers
an advantage in reducing the number of translation axes,
enhanced stability, and mitigation of alignment errors. The
reduction of the number of translation axes further ensures
repeatability.

Commonly, each super-pixel on the detector of the

techniques

to record four

polarization camera has four pixels that record the image at
four different polarizer angles. As the two incident waves
have a left-circular and right-circular polarization, it is
possible to obtain simultaneously four interferograms at
four different phase shifts. The orientation of this pixelated
array is shown in Fig. 17, which also shows an example of
a defocused point source measured at a single fixed shear
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4 super-pixels

1 super-pixel

.

\

Fig. 17 Schematic of the polarization camera sensor and intensity

maps demonstrating the phase shifts.

with 0°, 90°, 180°, and 270° phase shifts. The recorded
intensities have a resolution of 1024 x 1024 pixels.

One critical correction is needed before the phase can be
calculated. The individual frames are often clustered in a
super-pixel and can be separated without difficulty.
However, all four frames are not located at the same spatial
position. An additional interpolation is needed (e.g.,
including the Fourier shift theorem) to obtain all four
interferograms at the same spatial location. In this work,
we have compensated this spatial mismatch for the
interferograms 12, I3, and I4 (but not I1), to obtain an
interferogram that is shifted by 1/2 super-pixels.
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Experimental setup

Cartesian Coordinate Shear configuration

Fig. 18 shows the experimental setup for the Cartesian
coordinate shear setup, along with a schematic showing the
arrangement of optical components for the setup. The light
source illuminating the object is a class 3B, 520 nm
wavelength, 30 mW green laser. The object used for the
experiments is a USAF target. Two sets of lenses with 4f
configuration were used to keep the aperture 1 and the
object in focus. Aperture 2 was used to limit the effects of
stray light, back reflections, and the higher-order
diffraction orders. A polarization camera was used to
capture  the  four  phase-shifted interferograms
simultaneously (FLIR Blackfly-S model BFS-U3-51S5P-
C). The grating arrangement is shown in detail in Fig. 19.

The cartesian coordinate shear system in Fig. 19a has
four polarization gratings, two on the left-hand side (blue)
to shear the wavefield in the vertical direction (y-direction),
and the two on the right-hand side (green) to shear the
wavefield in the horizontal direction (x-direction). Two
leadscrew stages are connected to the two outermost X and
Y polarization gratings which translate along the Z-axis to
create the shears. The leadscrew stages utilize stepper
motors and encoders to accurately determine the stages'
position and limit switches for homing the system.
Additive manufacturing (3D printing) was used to
construct the stage, and accompanying electrical circuitry
and software were developed for the closed-loop control
system. The two inner gratings are fixed. Since only one

USAF target

Collimated I
laser source I

\_Y_/ Aperture 1

4f lens setup with
=50 mm

. - = . . L'

IR

Fig. 18 Experimental setup for Cartesian coordinate shear setup a schematic b experiment.

Aperture 2

Polarization
camera

4f lens setup with
=100 mm
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Fig. 19 Grating arrangement in Cartesian coordinate shear setup a experimental setup b schematic of the setup ¢ 3D schematic of the setup.

a
L 20 ”“&,‘x&
e
g T
g 60
<= X
> 80 “x

~100

0 20 40 60 80 100

X shear pixels

Fig. 20 Reconstructed results from cartesian coordinate shear experiment a shear selection b amplitude map ¢ phase map.

rad

grating can move in each grating pair, the shears are
limited to only one quadrant (see Fig. 10a, b).

An experiment was carried out to validate the previous
findings regarding the shear configuration in Fig. 10a. The
results for the first configuration are shown in Fig. 20,
where a total of 24 different shear amounts have been
applied (see Fig.20a) using an instrument that can
independently adjust the x- and y- shears. The object used
in this experiment is a simple section of an amplitude
USAF target, where the remaining sections are blacked out
due to aperture 1 (see Fig. 18a).

The shears were estimated from experimental data using
the auto-correlation method, as discussed in the previous
section. Once the shears were estimated, they were given
as input to the algorithm to reconstruct the wavefield. A
multi-resolution technique' was implemented within the
reconstruction algorithm to mitigate the effects of initial
guesses and improve the convergence. For our dataset with
1024 x 1024  pixels, a  5-level  multi-resolution
reconstruction starting from the coarsest grid with 64 x 64
pixels was implemented. The estimated wavefield is then
up-sampled by a factor of 2, and the reconstruction process
happens at a higher resolution (i.e., 128 x 128 pixels) using
the newly up-sampled wavefield as the initial guess. This
process repeats until the estimated wavefield reaches the
original resolution, i.e., 1024 x 1024 pixels. The results for
this 5-layer multi-resolution approach are shown in Fig. 20.

The reconstructed amplitude map (Fig. 20b) shows the
object features that would be expected. However, the phase

map in Fig. 20c shows the presence of parasitic signals.
This reconstruction is expected given the outcome of
previous simulations, see Fig. 10. This is a direct
consequence of the shear selection: most of the shears
selected for this experiment are dominant along the -45°
angle. This selection has generated parasitic signals along
the 45° angle, as seen in Fig. 20c.

Constant shearing Polar coordinate shear
configuration

The other shear configuration that produced consistently
better results was the configuration of a fixed shear with a
variable shear axis, An experimental
implementation is shown in Fig. 21, where the xy-shear
system in Fig. 18 is replaced with a simple two grating set
up on a rotational mount. Fig. 22 shows a more detailed
view of the shearing mechanism. Notably, the 2-grating
setup can be realized in a more compact optical setup;
however, we chose to keep the 4f configuration to compare
the two setups better. The results for the configuration in
Fig. 21, using 24 different shear amounts, are shown in
Fig. 23. Similar to the case of Fig. 20, a portion of the
USAF target has been selected for the measurement, and
the field of view is limited by aperture 1 (see Fig. 21).

Fig. 23a, b show that the solver successfully reconstructs
both the amplitude and the phase map, free of parasitic
fringes. For better visualization, a mask has been generated
(see Fig. 23c) using the amplitude information and applied
to the phase data (see Fig. 23d).

see Fig. 10c.
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Fig. 21 Experimental setup for polar coordinate shear system a schematic, b experiment.
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Fig. 22 Gratings arrangement in polar coordinate shear configuration
a Experimental setup showing the rotation of gratings. b Schematic
of the grating arrangement.

Fig. 23 Reconstructed results a amplitude map b phase map ¢ mask

from amplitude map d phase map with mask applied.

A further experiment has been conducted to verify that
the instrument in Fig. 21 can capture and reconstruct the
wavefield at a defocused distance. For this purpose, we
shift the camera's position by a distance of ~170 mm, so
that both the object and the aperture get defocused by the
same amount.

The reconstructed wavefield is shown in Fig. 24a, c.
After reconstruction, the wavefield was numerically
refocused to the visually best reconstruction distance
(z=162.94 mm) using the Angular Spectrum method™”.
The results of the refocused wavefield are shown in
Fig. 24b, d. For better visualization, various regions of the
reconstructions have been zoomed in and are presented in
Fig. 25.

Materials and methods

The light source used for the experiment is an FC-520-
040-PM laser system (520 nm, 30 mW) from CivilLaser.
The object sample is a combined USAF 1951 and Dot Grid
Target (Edmund Optics #62-465). The GP gratings have
been purchased from Edmund Optics (#12-677, 96%
diffraction efficiency at 550nm, 159grooves/mm, 25 x 25 x
0.45 mm). The light illuminating the object is linearly
polarized to produce 50% RHCP and 50% LHCP at the GP
grating, maximizing the fringe visibility. The camera used
for imaging is a FLIR Blackfly-S model BFS-U3-51S5P-C
polarization camera. The Ilenses used for the 4f-
configuration have an effective focal length of 50 mm.
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Fig. 24 Reconstructed results from defocused object a amplitude map
before numerical refocusing. b Amplitude map after numerical
refocusing. ¢ Phase map before numerical refocusing. d Phase map
after numerical refocusing.

Conclusion

In this work, a GP grating-based shearing holography
system has been presented. The GP gratings used in this
work have the unique ability to have a polarization-
sensitive diffraction angle, where the RHCP and LHCP
light beams are diffracted in two different directions.
Figs. 1-3 show how these properties can be exploited with
a linear polarizer to create an adjustable shearing
interferometer. This paper presented distinct
configurations, (i) one that allows for adjustable xy-
shearing, and (ii) one that keeps the shear amount constant
but rotates the shear axis. Another aspect of the GP
grating-based shearing interferometer is that a series of

two
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phase-shifted interferograms can be obtained by either
rotating the polarizer (see Fig.4) or using a pixelated
polarization camera (see Fig. 17).

The ability to produce a series of phase-shifted
interferograms obtained under various shear amounts opens
the possibility to obtain high fidelity data that can be
processed in a wavefront reconstruction algorithm. In this
work, we have implemented the approach of
Konijnenberg'® outlined in Fig. 5 but added a filtering
procedure to remove algorithm-specific artifacts (see
Fig. 6d, Figs. 7-9). We further investigated the effect of
the shear selection. Fig. 10 showed that choosing the shears
to be on a circle in the sx-sy plane provides consistently
good results, where the error is of high-frequency nature.
These findings are supported using Servin’s™ transfer
function analysis and spatial domain support that were
referred to as “frequency domain information density” (see
Fig. 11) and “spatial domain information density ” (see
Fig. 14). One critical step is the estimation of the exact
shear amount. Any discrepancy between the actual shear
amount and the values used within the wavefront
reconstruction algorithms will increase, to some degree, the
RMS in the reconstructed phase, see Fig. 15. However, the
results in Fig. 15 also show that an imperfect shear
estimate value has a strong impact on the resolution of the
reconstructed wavefield (even if the RMS increases only
marginally by 10%, for the case of typical levels of
intensity noise). To ensure accurate results, we have
reported a shear estimation technique using the second
derivative of the autocorrelation function, where the spikes
of that function estimate shear amount down to an accuracy
of 0.5 pixels, as shown in Fig. 16. The reconstruction

£ i
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Fig. 25 Reconstructed wavefield of defocused object (zoomed) after post processing: a Amplitude map of the full object. b Region 1 amplitude
map. ¢ Regions 2 amplitude map. d Regions 3 amplitude map. e Phase map of the full object. f Region 1 phase map. g Region 2 phase map.
h Region 3 phase map.
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algorithm presented in this paper does not limit the
possible applied shears. The algorithm can process sub-
pixel shearing as the algorithm primarily operates on FFTs.
However, the shear detection technique presented in this
paper is limited in identifying shears. The procedure
detects twice the values of
interferogram as integer, and hence the shears can be
estimated down to integer multiples of 0.5 pixels. More
sophisticated shear detection algorithms (using weighted
mass algorithms or techniques based on ideas from Guizar-
Sicairos M. et al™.) might enable finer shearing detection
down to 0.01 pixels and are subject to future research.

The previous aspects have been verified experimentally
for both shearing configurations, as shown in Fig. 18,19 for
the xy-shearing component and Fig. 21,22 for the
configuration that rotates the shear axis. As expected, the
system configuration that keeps both gratings fixed while
the grating pair rotates about the optical axis provides the
visually best reconstruction result with no parasitic fringes,
as shown in Fig. 20,23. A further advantage of the setup
with the variable shear axis is that it requires only two GP
gratings and can be, in principle, incorporated into a more
compact setup. There are also several motorized rotating
mounts available that could automate this process.

Finally, we demonstrate the feasibility of this approach
by reconstructing the wavefield of a defocused object at the
distance z = 162.94 mm. Refocusing using the Angular
Spectrum method™”’ produces Fig. 24,25.

These findings show the advantage of GP grating-based
shear interferometers compared to conventional dual
grating (or dual double-grating) configurations. A
conventional dual-axis grating-based variable shearing
interferometer with phase shift capabilities requires two
independent axial shifts of the x- and y- gratings (to adjust
the shear) and lateral shifts of the gratings in x- and y-
direction (for phase-shifting). Having to control four
mechanical axes independently is a significant system
complexity, where the freedom to adjust all parameters
appropriately is often compromised due to space
constraints. In contrast, the results of this work show that a
GP grating configuration with a fixed shear amount, but an
adjustable rotational shear axis can provide the shear
selections for robust measurements while maintaining
phase-shifting capabilities using a pixelated polarization
camera. In other robust variable shearing
interferometry can be made possible by controlling only
one mechanical axis (instead of four). This finding has
implications for future compact interferometer designs.

shears for a sheared
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